
Parsl Documentation
Release 1.1.0

The Parsl Team

Apr 26, 2021

CONTENTS

1 Quickstart 3
1.1 Installation . 3
1.2 Getting started . 4
1.3 Tutorial . 4
1.4 Usage Tracking . 4
1.5 For Developers . 5

2 Parsl tutorial 7
2.1 Configuring Parsl . 7
2.2 Python Apps . 8
2.3 Bash Apps . 8
2.4 Passing data . 9
2.5 AppFutures . 9
2.6 DataFutures . 10
2.7 Files . 11
2.8 Remote Files . 11
2.9 Sequential workflow . 12
2.10 Parallel workflow . 12
2.11 Parallel dataflow . 13
2.12 Monte Carlo workflow . 14
2.13 Local execution with threads . 15
2.14 Local execution with pilot jobs . 15

3 User guide 17
3.1 Overview . 17
3.2 Apps . 23
3.3 Futures . 26
3.4 Passing Python objects . 29
3.5 Staging data files . 29
3.6 Execution . 35
3.7 Error handling . 42
3.8 Memoization and checkpointing . 43
3.9 Configuration . 48
3.10 Monitoring . 71
3.11 Example parallel patterns . 77
3.12 Structuring Parsl programs . 81
3.13 Join Apps . 82
3.14 Performance and Scalability . 85
3.15 Usage statistics collection . 87

i

4 FAQ 89
4.1 How can I debug a Parsl script? . 89
4.2 How can I view outputs and errors from apps? . 89
4.3 How can I make an App dependent on multiple inputs? . 89
4.4 Can I pass any Python object between apps? . 90
4.5 How do I specify where apps should be run? . 90
4.6 Workers do not connect back to Parsl . 90
4.7 parsl.dataflow.error.ConfigurationError . 91
4.8 Remote execution fails with SystemError(unknown opcode) . 91
4.9 Parsl complains about missing packages . 92
4.10 zmq.error.ZMQError: Invalid argument . 92
4.11 How do I run code that uses Python2.X? . 92
4.12 Parsl hangs . 93
4.13 How can I start a Jupyter notebook over SSH? . 93
4.14 How can I sync my conda environment and Jupyter environment? 94
4.15 Addressing SerializationError . 94
4.16 How do I cite Parsl? . 94

5 API Reference guide 97
5.1 Core . 97
5.2 Configuration . 101
5.3 Channels . 105
5.4 Data management . 110
5.5 Executors . 118
5.6 Launchers . 134
5.7 Providers . 138
5.8 Exceptions . 157
5.9 Internal . 164

6 Developer documentation 173
6.1 Contributing . 173
6.2 Changelog . 173
6.3 Libsubmit Changelog . 191
6.4 Swift vs Parsl . 192
6.5 Roadmap . 195
6.6 Packaging . 198
6.7 Doc Docs . 199

7 Indices and tables 201

Index 203

ii

Parsl Documentation, Release 1.1.0

Parsl is a flexible and scalable parallel programming library for Python. Parsl augments Python with simple constructs
for encoding parallelism. Developers annotate Python functions to specify opportunities for concurrent execution.
These annotated functions, called apps, may represent pure Python functions or calls to external applications. Parsl
further allows invocations of these apps, called tasks, to be connected by shared input/output data (e.g., Python
objects or files) via which Parsl constructs a dynamic dependency graph of tasks to manage concurrent task execution
where possible.

Parsl includes an extensible and scalable runtime that allows it to efficiently execute Parsl programs on one or many
processors. Parsl programs are portable, enabling them to be easily moved between different execution resources:
from laptops to supercomputers. When executing a Parsl program, developers must define (or import) a Python
configuration object that outlines where and how to execute tasks. Parsl supports various target resources including
clouds (e.g., Amazon Web Services and Google Cloud), clusters (e.g., using Slurm, Torque/PBS, HTCondor, Cobalt),
and container orchestration systems (e.g., Kubernetes). Parsl scripts can scale from several cores on a single computer
through to hundreds of thousands of cores across many thousands of nodes on a supercomputer.

Parsl can be used to implement various parallel computing paradigms:

• Concurrent execution of tasks in a bag-of-tasks program.

• Procedural workflows in which tasks are executed following control logic.

• Parallel dataflow in which tasks are executed when their data dependencies are met.

• Many-task applications in which many computing resources are used to perform various computational tasks.

• Dynamic workflows in which the workflow is dynamically determined during execution.

• Interactive parallel programming through notebooks or interactive.

CONTENTS 1

Parsl Documentation, Release 1.1.0

2 CONTENTS

CHAPTER

ONE

QUICKSTART

To try Parsl now (without installing any code locally), experiment with our hosted tutorial notebooks on Binder.

1.1 Installation

Parsl is available on PyPI and conda-forge.

Parsl requires Python3.5+ and has been tested on Linux and macOS.

1.1.1 Installation using Pip

While pip can be used to install Parsl, we suggest the following approach for reliable installation when many Python
environments are available.

1. Install Parsl:

$ python3 -m pip install parsl

To update a previously installed parsl to a newer version, use: python3 -m pip install -U parsl

1.1.2 Installation using Conda

1. Create and activate a new conda environment:

$ conda create --name parsl_py36 python=3.6
$ source activate parsl_py36

2. Install Parsl:

$ python3 -m pip install parsl

or

$ conda config --add channels conda-forge
$ conda install parsl

The conda documentation provides instructions for installing conda on macOS and Linux.

3

https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master
https://pypi.org/project/parsl/
https://anaconda.org/conda-forge/parsl
https://docs.conda.io/projects/conda/en/latest/user-guide/install/

Parsl Documentation, Release 1.1.0

1.2 Getting started

Parsl enables concurrent execution of Python functions (python_app) or external applications (bash_app). De-
velopers must first annotate functions with Parsl decorators. When these functions are invoked, Parsl will manage the
asynchronous execution of the function on specified resources. The result of a call to a Parsl app is an AppFuture.

The following example shows how to write a simple Parsl program with hello world Python and Bash apps.

import parsl
from parsl import python_app, bash_app

parsl.load()

@python_app
def hello_python (message):

return 'Hello %s' % message

@bash_app
def hello_bash(message, stdout='hello-stdout'):

return 'echo "Hello %s"' % message

invoke the Python app and print the result
print(hello_python('World (Python)').result())

invoke the Bash app and read the result from a file
hello_bash('World (Bash)').result()

with open('hello-stdout', 'r') as f:
print(f.read())

1.3 Tutorial

The best way to learn more about Parsl is by reviewing the Parsl tutorials. There are several options for following the
tutorial:

1. Use Binder to follow the tutorial online without installing or writing any code locally.

2. Clone the Parsl tutorial repository using a local Parsl installation.

3. Read through the online tutorial documentation.

1.4 Usage Tracking

To help support the Parsl project, we ask that users opt-in to anonymized usage tracking whenever possible. Usage
tracking allows us to measure usage, identify bugs, and improve usability, reliability, and performance. Only aggregate
usage statistics will be used for reporting purposes.

As an NSF-funded project, our ability to track usage metrics is important for continued funding.

You can opt-in by setting PARSL_TRACKING=true in your environment or by setting usage_tracking=True
in the configuration object (parsl.config.Config).

To read more about what information is collected and how it is used see Usage statistics collection.

4 Chapter 1. Quickstart

https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master
https://github.com/Parsl/parsl-tutorial
1-parsl-introduction.html

Parsl Documentation, Release 1.1.0

1.5 For Developers

Parsl is an open source community that encourages contributions from users and developers. A guide for contributing
to Parsl is available in the Parsl GitHub repository.

The following instructions outline how to set up Parsl from source.

1. Download Parsl:

$ git clone https://github.com/Parsl/parsl

2. Install:

$ cd parsl
$ pip install .
(To install specific extra options from the source :)
$ pip install .[<optional_pacakge1>...]

3. Use Parsl!

1.5. For Developers 5

https://github.com/Parsl/parsl/blob/master/CONTRIBUTING.rst
https://github.com/Parsl/parsl

Parsl Documentation, Release 1.1.0

6 Chapter 1. Quickstart

CHAPTER

TWO

PARSL TUTORIAL

Parsl is a native Python library that allows you to write functions that execute in parallel and tie them together with
dependencies to create workflows. Parsl wraps Python functions as “Apps” using the @python_app decorator, and
Apps that call external applications using the @bash_app decorator. Decorated functions can run in parallel when all
their inputs are ready.

For more comprehensive documentation and examples, please refer our documentation.

[]: import parsl
import os
from parsl.app.app import python_app, bash_app
from parsl.configs.local_threads import config

#parsl.set_stream_logger() # <-- log everything to stdout

print(parsl.__version__)

2.1 Configuring Parsl

Parsl separates code and execution. To do so, it relies on a configuration model to describe the pool of resources to be
used for execution (e.g., clusters, clouds, threads).

We’ll come back to configuration later in this tutorial. For now, we configure this example to use a local pool of
threads to facilitate local parallel execution.

[]: parsl.load(config)

2.1.1 Apps

In Parsl an app is a piece of code that can be asynchronously executed on an execution resource (e.g., cloud, cluster,
or local PC). Parsl provides support for pure Python apps (python_app) and also command-line apps executed via
Bash (bash_app).

7

http://parsl.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Thread_computing

Parsl Documentation, Release 1.1.0

2.2 Python Apps

As a first example, let’s define a simple Python function that returns the string ‘Hello World!’. This function is made
into a Parsl App using the @python_app decorator.

[]: @python_app
def hello ():

return 'Hello World!'

print(hello().result())

As can be seen above, Apps wrap standard Python function calls. As such, they can be passed arbitrary arguments and
return standard Python objects.

[]: @python_app
def multiply(a, b):

return a * b

print(multiply(5, 9).result())

As Parsl apps are potentially executed remotely, they must contain all required dependencies in the function body. For
example, if an app requires the time library, it should import that library within the function.

[]: @python_app
def slow_hello ():

import time
time.sleep(5)
return 'Hello World!'

print(slow_hello().result())

2.3 Bash Apps

Parsl’s Bash app allows you to wrap execution of external applications from the command-line as you would in a Bash
shell. It can also be used to execute Bash scripts directly. To define a Bash app, the wrapped Python function must
return the command-line string to be executed.

As a first example of a Bash app, let’s use the Linux command echo to return the string ‘Hello World!’. This function
is made into a Bash App using the @bash_app decorator.

Note that the echo command will print ‘Hello World!’ to stdout. In order to use this output, we need to tell Parsl to
capture stdout. This is done by specifying the stdout keyword argument in the app function. The same approach
can be used to capture stderr.

[]: @bash_app
def echo_hello(stdout='echo-hello.stdout', stderr='echo-hello.stderr'):

return 'echo "Hello World!"'

echo_hello().result()

with open('echo-hello.stdout', 'r') as f:
print(f.read())

8 Chapter 2. Parsl tutorial

Parsl Documentation, Release 1.1.0

2.4 Passing data

Parsl Apps can exchange data as Python objects (as shown above) or in the form of files. In order to enforce dataflow
semantics, Parsl must track the data that is passed into and out of an App. To make Parsl aware of these dependencies,
the app function includes inputs and outputs keyword arguments.

We first create three test files named hello1.txt, hello2.txt, and hello3.txt containing the text “hello 1”, “hello 2”, and
“hello 3”.

[]: for i in range(3):
with open(os.path.join(os.getcwd(), 'hello-{}.txt'.format(i)), 'w') as f:

f.write('hello {}\n'.format(i))

We then write an App that will concentate these files using cat. We pass in the list of hello files (inputs) and
concatenate the text into a new file named all_hellos.txt (outputs). As we describe below we use Parsl File objects
to abstract file locations in the event the cat app is executed on a different computer.

[]: from parsl.data_provider.files import File

@bash_app
def cat(inputs=[], outputs=[]):

return 'cat {} > {}'.format(" ".join([i.filepath for i in inputs]), outputs[0])

concat = cat(inputs=[File(os.path.join(os.getcwd(), 'hello-0.txt')),
File(os.path.join(os.getcwd(), 'hello-1.txt')),
File(os.path.join(os.getcwd(), 'hello-2.txt'))],

outputs=[File(os.path.join(os.getcwd(), 'all_hellos.txt'))])

Open the concatenated file
with open(concat.outputs[0].result(), 'r') as f:

print(f.read())

2.4.1 Futures

When a normal Python function is invoked, the Python interpreter waits for the function to complete execution and
returns the results. In case of long running functions, it may not be desirable to wait for completion. Instead, it
is preferable that functions are executed asynchronously. Parsl provides such asynchronous behavior by returning a
future in lieu of results. A future is essentially an object that allows Parsl to track the status of an asynchronous task
so that it may, in the future, be interrogated to find the status, results, exceptions, etc.

Parsl provides two types of futures: AppFutures and DataFutures. While related, these two types of futures enable
subtly different workflow patterns, as we will see.

2.5 AppFutures

AppFutures are the basic building block upon which Parsl scripts are built. Every invocation of a Parsl app returns an
AppFuture, which may be used to manage execution of the app and control the workflow.

Here we show how AppFutures are used to wait for the result of a Python App.

[]: @python_app
def hello ():

import time
(continues on next page)

2.4. Passing data 9

Parsl Documentation, Release 1.1.0

(continued from previous page)

time.sleep(5)
return 'Hello World!'

app_future = hello()

Check if the app_future is resolved, which it won't be
print('Done: {}'.format(app_future.done()))

Print the result of the app_future. Note: this
call will block and wait for the future to resolve
print('Result: {}'.format(app_future.result()))
print('Done: {}'.format(app_future.done()))

2.6 DataFutures

While AppFutures represent the execution of an asynchronous app, DataFutures represent the files it produces. Parsl’s
dataflow model, in which data flows from one app to another via files, requires such a construct to enable apps
to validate creation of required files and to subsequently resolve dependencies when input files are created. When
invoking an app, Parsl requires that a list of output files be specified (using the outputs keyword argument). A
DataFuture for each file is returned by the app when it is executed. Throughout execution of the app, Parsl will
monitor these files to 1) ensure they are created, and 2) pass them to any dependent apps.

[]: # App that echos an input message to an output file
@bash_app
def slowecho(message, outputs=[]):

return 'sleep 5; echo %s &> %s' % (message, outputs[0])

Call slowecho specifying the output file
hello = slowecho('Hello World!', outputs=[File(os.path.join(os.getcwd(), 'hello-world.
→˓txt'))])

The AppFuture's outputs attribute is a list of DataFutures
print(hello.outputs)

Also check the AppFuture
print('Done: {}'.format(hello.done()))

Print the contents of the output DataFuture when complete
with open(hello.outputs[0].result(), 'r') as f:

print(f.read())

Now that this is complete, check the DataFutures again, and the Appfuture
print(hello.outputs)
print('Done: {}'.format(hello.done()))

10 Chapter 2. Parsl tutorial

Parsl Documentation, Release 1.1.0

2.6.1 Data Management

Parsl is designed to enable implementation of dataflow patterns. These patterns enable workflows, in which the data
passed between apps manages the flow of execution, to be defined. Dataflow programming models are popular as they
can cleanly express, via implicit parallelism, the concurrency needed by many applications in a simple and intuitive
way.

2.7 Files

Parsl’s file abstraction abstracts access to a file irrespective of where the app is executed. When referencing a Parsl file
in an app (by calling filepath), Parsl translates the path to the file’s location relative to the file system on which the
app is executing.

[]: from parsl.data_provider.files import File

App that copies the contents of a file to another file
@bash_app
def copy(inputs=[], outputs=[]):

return 'cat %s &> %s' % (inputs[0], outputs[0])

Create a test file
open(os.path.join(os.getcwd(), 'cat-in.txt'), 'w').write('Hello World!\n')

Create Parsl file objects
parsl_infile = File(os.path.join(os.getcwd(), 'cat-in.txt'),)
parsl_outfile = File(os.path.join(os.getcwd(), 'cat-out.txt'),)

Call the copy app with the Parsl file
copy_future = copy(inputs=[parsl_infile], outputs=[parsl_outfile])

Read what was redirected to the output file
with open(copy_future.outputs[0].result(), 'r') as f:

print(f.read())

2.8 Remote Files

The Parsl file abstraction can also represent remotely accessible files. In this case, you can instantiate a file object
using the remote location of the file. Parsl will implictly stage the file to the execution environment before executing
any dependent apps. Parsl will also translate the location of the file into a local file path so that any dependent apps
can access the file in the same way as a local file. Parsl supports files that are accessible via Globus, FTP, and HTTP.

Here we create a File object using a publicly accessible file with random numbers. We can pass this file to the
sort_numbers app in the same way we would a local file.

[]: from parsl.data_provider.files import File

@python_app
def sort_numbers(inputs=[]):

with open(inputs[0].filepath, 'r') as f:
strs = [n.strip() for n in f.readlines()]
strs.sort()
return strs

(continues on next page)

2.7. Files 11

Parsl Documentation, Release 1.1.0

(continued from previous page)

unsorted_file = File('https://raw.githubusercontent.com/Parsl/parsl-tutorial/master/
→˓input/unsorted.txt')

f = sort_numbers(inputs=[unsorted_file])
print (f.result())

2.8.1 Composing a workflow

Now that we understand all the building blocks, we can create workflows with Parsl. Unlike other workflow systems,
Parsl creates implicit workflows based on the passing of control or data between Apps. The flexibility of this model
allows for the creation of a wide range of workflows from sequential through to complex nested, parallel workflows.
As we will see below, a range of workflows can be created by passing AppFutures and DataFutures between Apps.

2.9 Sequential workflow

Simple sequential or procedural workflows can be created by passing an AppFuture from one task to another. The
following example shows one such workflow, which first generates a random number and then writes it to a file.

[]: # App that generates a random number
@python_app
def generate(limit):

from random import randint
return randint(1,limit)

App that writes a variable to a file
@bash_app
def save(variable, outputs=[]):

return 'echo %s &> %s' % (variable, outputs[0])

Generate a random number between 1 and 10
random = generate(10)
print('Random number: %s' % random.result())

Save the random number to a file
saved = save(random, outputs=[File(os.path.join(os.getcwd(), 'sequential-output.txt
→˓'))])

Print the output file
with open(saved.outputs[0].result(), 'r') as f:

print('File contents: %s' % f.read())

2.10 Parallel workflow

The most common way that Parsl Apps are executed in parallel is via looping. The following example shows how a
simple loop can be used to create many random numbers in parallel. Note that this takes 5 seconds to run (the time
needed for the longest delay), not the 15 seconds that would be needed if these generate functions were called and
returned in sequence.

12 Chapter 2. Parsl tutorial

Parsl Documentation, Release 1.1.0

[]: # App that generates a random number after a delay
@python_app
def generate(limit,delay):

from random import randint
import time
time.sleep(delay)
return randint(1,limit)

Generate 5 random numbers between 1 and 10
rand_nums = []
for i in range(5):

rand_nums.append(generate(10,i))

Wait for all apps to finish and collect the results
outputs = [i.result() for i in rand_nums]

Print results
print(outputs)

2.11 Parallel dataflow

Parallel dataflows can be developed by passing data between Apps. In this example we create a set of files, each with
a random number, we then concatenate these files into a single file and compute the sum of all numbers in that file.
The calls to the first App each create a file, and the second App reads these files and creates a new one. The final App
returns the sum as a Python integer.

[]: # App that generates a semi-random number between 0 and 32,767
@bash_app
def generate(outputs=[]):

return "echo $((RANDOM)) &> {}".format(outputs[0])

App that concatenates input files into a single output file
@bash_app
def concat(inputs=[], outputs=[]):

return "cat {0} > {1}".format(" ".join([i.filepath for i in inputs]), outputs[0])

App that calculates the sum of values in a list of input files
@python_app
def total(inputs=[]):

total = 0
with open(inputs[0], 'r') as f:

for l in f:
total += int(l)

return total

Create 5 files with semi-random numbers in parallel
output_files = []
for i in range (5):

output_files.append(generate(outputs=[File(os.path.join(os.getcwd(), 'random-{}.
→˓txt'.format(i)))]))

Concatenate the files into a single file
cc = concat(inputs=[i.outputs[0] for i in output_files],

outputs=[File(os.path.join(os.getcwd(), 'all.txt'))])

(continues on next page)

2.11. Parallel dataflow 13

Parsl Documentation, Release 1.1.0

(continued from previous page)

Calculate the sum of the random numbers
total = total(inputs=[cc.outputs[0]])
print (total.result())

2.11.1 Examples

2.12 Monte Carlo workflow

Many scientific applications use the Monte Carlo method to compute results.

One example is calculating 𝜋 by randomly placing points in a box and using the ratio that are placed inside the circle.

Specifically, if a circle with radius 𝑟 is inscribed inside a square with side length 2𝑟, the area of the circle is 𝜋𝑟2 and
the area of the square is (2𝑟)2.

Thus, if 𝑁 uniformly-distributed random points are dropped within the square, approximately 𝑁𝜋/4 will be inside
the circle.

Each call to the function pi() is executed independently and in parallel. The avg_three() app is used to compute
the average of the futures that were returned from the pi() calls.

The dependency chain looks like this:

App Calls pi() pi() pi()
\ | /

Futures a b c
\ | /

App Call avg_points()
|

Future avg_pi

[]: # App that estimates pi by placing points in a box
@python_app
def pi(num_points):

from random import random

inside = 0
for i in range(num_points):

x, y = random(), random() # Drop a random point in the box.
if x**2 + y**2 < 1: # Count points within the circle.

inside += 1

return (inside*4 / num_points)

App that computes the mean of three values
@python_app
def mean(a, b, c):

return (a + b + c) / 3

Estimate three values for pi
a, b, c = pi(10**6), pi(10**6), pi(10**6)

Compute the mean of the three estimates
mean_pi = mean(a, b, c)

(continues on next page)

14 Chapter 2. Parsl tutorial

https://en.wikipedia.org/wiki/Monte_Carlo_method#History

Parsl Documentation, Release 1.1.0

(continued from previous page)

Print the results
print("a: {:.5f} b: {:.5f} c: {:.5f}".format(a.result(), b.result(), c.result()))
print("Average: {:.5f}".format(mean_pi.result()))

2.12.1 Execution and configuration

Parsl is designed to support arbitrary execution providers (e.g., PCs, clusters, supercomputers, clouds) and execution
models (e.g., threads, pilot jobs). The configuration used to run the script tells Parsl how to execute apps on the desired
environment. Parsl provides a high level abstraction, called a Block, for describing the resource configuration for a
particular app or script.

Information about the different execution providers and executors supported is included in the Parsl documentation.

So far in this tutorial, we’ve used a built-in configuration for running with threads. Below, we will illustrate how to
create configs for different environments.

2.13 Local execution with threads

As we saw above, we can configure Parsl to execute apps on a local thread pool. This is a good way to parallelize
execution on a local PC. The configuration object defines the executors that will be used as well as other options such
as authentication method (e.g., if using SSH), checkpoint files, and executor specific configuration. In the case of
threads we define the maximum number of threads to be used.

[]: from parsl.config import Config
from parsl.executors.threads import ThreadPoolExecutor

local_threads = Config(
executors=[

ThreadPoolExecutor(
max_threads=8,
label='local_threads'

)
]

)

2.14 Local execution with pilot jobs

We can also define a configuration that uses Parsl’s HighThroughputExecutor. In this mode, pilot jobs are used to
manage the submission. Parsl creates an interchange to manage execution and deploys one or more workers to execute
tasks. The following config will instantiate this infrastructure locally, it can be extended to include a remote provider
(e.g., the Cori or Theta supercomputers) for execution.

[]: from parsl.providers import LocalProvider
from parsl.channels import LocalChannel
from parsl.config import Config
from parsl.executors import HighThroughputExecutor

local_htex = Config(
executors=[

HighThroughputExecutor(

(continues on next page)

2.13. Local execution with threads 15

https://parsl.readthedocs.io/en/latest/userguide/execution.html

Parsl Documentation, Release 1.1.0

(continued from previous page)

label="htex_Local",
worker_debug=True,
cores_per_worker=1,
provider=LocalProvider(

channel=LocalChannel(),
init_blocks=1,
max_blocks=1,

),
)

],
strategy=None,

)

[]: parsl.clear()
#parsl.load(local_threads)
parsl.load(local_htex)

[]: @bash_app
def generate(outputs=[]):

return "echo $((RANDOM)) &> {}".format(outputs[0])

@bash_app
def concat(inputs=[], outputs=[]):

return "cat {0} > {1}".format(" ".join(i.filepath for i in inputs), outputs[0])

@python_app
def total(inputs=[]):

total = 0
with open(inputs[0], 'r') as f:

for l in f:
total += int(l)

return total

Create 5 files with semi-random numbers
output_files = []
for i in range (5):

output_files.append(generate(outputs=[File(os.path.join(os.getcwd(), 'random-%s.
→˓txt' % i))]))

Concatenate the files into a single file
cc = concat(inputs=[i.outputs[0] for i in output_files],

outputs=[File(os.path.join(os.getcwd(), 'combined.txt'))])

Calculate the sum of the random numbers
total = total(inputs=[cc.outputs[0]])

print (total.result())

16 Chapter 2. Parsl tutorial

CHAPTER

THREE

USER GUIDE

3.1 Overview

Parsl is designed to enable straightforward parallelism and orchestration of asynchronous tasks into dataflow-based
workflows, in Python. Parsl manages the concurrent execution of these tasks across various computation resources,
from laptops to supercomputers, scheduling each task only when its dependencies (e.g., input data dependencies) are
met.

Developing a Parsl program is a two-step process:

1. Define Parsl apps by annotating Python functions to indicate that they can be executed concurrently.

2. Use standard Python code to invoke Parsl apps, creating asynchronous tasks and adhering to dependencies
defined between apps.

We aim in this section to provide a mental model of how Parsl programs behave. We discuss how Parsl programs create
concurrent tasks, how tasks communicate, and the nature of the environment on which Parsl programs can perform
operations. In each case, we compare and contrast the behavior of Python programs that use Parsl constructs with
those of conventional Python programs.

Note: The behavior of a Parsl program can vary in minor respects depending on the Executor used (see Execution).
We focus here on the behavior seen when using the recommended HighThroughputExecutor (HTEX).

3.1.1 Parsl and Concurrency

Any call to a Parsl app creates a new task that executes concurrently with the main program and any other task(s) that
are currently executing. Different tasks may execute on the same nodes or on different nodes, and on the same or
different computers.

The Parsl execution model thus differs from the Python native execution model, which is inherently sequential. A
Python program that does not contain Parsl constructs, or make use of other concurrency mechanisms, executes state-
ments one at a time, in the order that they appear in the program. This behavior is illustrated in the following figure,
which shows a Python program on the left and, on the right, the statements executed over time when that program is
run, from top to bottom. Each time that the program calls a function, control passes from the main program (in black)
to the function (in red). Execution of the main program resumes only after the function returns.

17

Parsl Documentation, Release 1.1.0

In contrast, the Parsl execution model is inherently concurrent. Whenever a program calls an app, a separate thread
of execution is created, and the main program continues without pausing. Thus in the example shown in the figure
below. There is initially a single task: the main program (black). The first call to double creates a second task (red)
and the second call to double creates a third task (orange). The second and third task terminate as the function that
they execute returns. (The dashed lines represent the start and finish of the tasks). The calling program will only block
(wait) when it is explicitly told to do so (in this case by calling result())

Note: Note: We talk here about concurrency rather than parallelism for a reason. Two activities are concurrent if
they can execute at the same time. Two activities occur in parallel if they do run at the same time. If a Parsl program
creates more tasks that there are available processors, not all concurrent activities may run in parallel.

3.1.2 Parsl and Execution

We have now seen that Parsl tasks are executed concurrently alongside the main Python program and other Parsl tasks.
We now turn to the question of how and where are those tasks executed. Given the range of computers on which par-
allel programs may be executed, Parsl allows tasks to be executed using different executors (parsl.executors).
Executors are responsible for taking a queue of tasks and executing them on local or remote resources.

We briefly describe two of Parsl’s most commonly used executors. Other executors are described in Execution.

The HighThroughputExecutor (HTEX) implements a pilot job model that enables fine-grain task execution
using across one or more provisioned nodes. HTEX can be used on a single node (e.g., a laptop) and will make use of
multiple processes for concurrent execution. As shown in the following figure, HTEX uses Parsl’s provider abstraction
(parsl.providers) to communicate with a resource manager (e.g., batch scheduler or cloud API) to provision
a set of nodes (e.g., Parsl will use Slurm’s qsub command to request nodes on a Slurm cluster) for the duration of

18 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

execution. HTEX deploys a lightweight worker agent on the nodes which subsequently connects back to the main
Parsl process. Parsl tasks are then sent from the main program to the connected workers for execution and the results
are sent back via the same mechanism. This approach has a number of advantages over other methods: it avoids long
job scheduler queue delays by acquiring one set of resources for the entire program and it allows for scheduling of
many tasks on individual nodes.

The ThreadPoolExecutor allows tasks to be executed on a pool of locally accessible threads. As execution
occurs on the same computer, on a pool of threads forked from the main program, the tasks share memory with one
another (this is discussed further in the following sections).

3.1.3 Parsl and Communication

Parsl tasks typically need to communicate in order to perform useful work. Parsl provides for two forms of com-
munication: by parameter passing and by file passing. As described in the next section, Parsl programs may also
communicate by interacting with shared filesystems and services its environment.

Parameter Passing

The figure above illustrates communication via parameter passing. The call double(3) to the app double in
the main program creates a new task and passes the parameter value, 3, to that new task. When the task completes
execution, its return value, 6, is returned to the main program. Similarly, the second task is passed the value 5 and
returns the value 10. In this case, the parameters passed are simple primitive types (i.e., integers); however, complex
objects (e.g., Numpy Arrays, Pandas DataFrames, custom objects) can also be passed to/from tasks.

3.1. Overview 19

Parsl Documentation, Release 1.1.0

File Passing

Parsl supports communication via files in both Bash apps and Python apps. Files may be used in place of parameter
passing for many reasons, such as for apps are designed to support files, when data to be exchanged are large, or when
data cannot be easily serialized into Python objects. As Parsl tasks may be executed on remote nodes, without shared
file systems, Parsl offers a Parsl parsl.data_provider.files.File construct for location-independent ref-
erence to files. Parsl will translate file objects to worker-accessible paths when executing dependent apps. Parsl is also
able to transfer files in, out, and between Parsl apps using one of several methods (e.g., FTP, HTTP(S), Globus and
rsync). To accommodate the asynchronous nature of file transfer, Parsl treats data movement like a Parsl app, adding
a dependency to the execution graph and waiting for transfers to complete before executing dependent apps. More
information is provided in Passing Python objects).

Futures

Communication via parameter and file passing also serves a second purpose, namely synchronization. As we discuss
in more detail in Futures, a call to an app returns a special object called a future that has a special unassigned state
until such time as the app returns, at which time it takes the return value. (In the example program, two futures are thus
created, d1 and d2.) The AppFuture function result() blocks until the future to which it is applied takes a value. Thus
the print statement in the main program blocks until both child tasks created by the calls to the double app return. The
following figure captures this behavior, with time going from left to right rather than top to bottom as in the preceding
figure. Task 1 is initially active as it starts Tasks 2 and 3, then blocks as a result of calls to d1.result() and d2.result(),
and when those values are available, is active again.

3.1.4 The Parsl Environment

Regular Python and Parsl-enhanced Python differ in terms of the environment in which code executes. We use the term
environment here to refer to the variables and modules (the memory environment), the file system(s) (the file system
environment), and the services (the service environment) that are accessible to a function.

An important question when it comes to understanding the behavior of Parsl programs is the environment in which
this new task executes: does it have the same or different memory, file system, or service environment as its parent
task or any other task? The answer, depends on the executor used, and (in the case of the file system environment)
where the task executes. Below we describe behavior for the most commonly used HighThroughputExecutor
which is representative of all Parsl executors except the ThreadPoolExecutor.

20 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

Memory environment

In Python, the variables and modules that are accessible to a function are defined by Python scoping rules, by which
a function has access to both variables defined within the function (local variables) and those defined outside the
function (global variables). Thus in the following code, the print statement in the print_answer function accesses the
global variable “answer”, and we see as output “the answer is 42.”

answer = 42

def print_answer():
print('the answer is', answer)

print_answer()

In Parsl (except when using the ThreadPoolExecutor) a Parsl app is executed in a distinct environment that
only has access to local variables associated with the app function. Thus, if the program above is executed with say
the HighThroughputExecutor, will print “the answer is 0” rather than “the answer is 42,” because the print
statement in provide_answer does not have access to the global variable that has been assigned the value 42. The
program will run without errors when using the ThreadPoolExecutor.

Similarly, the same scoping rules apply to import statements, and thus the following program will run without errors
with the ThreadPoolExecutor, but raise errors when run with any other executor, because the return statement
in ambiguous_double refers to a variable (factor) and a module (random) that are not known to the function.

import random
factor = 5

@python_app
def ambiguous_double(x):

return x * random.random() * factor

print(ambiguous_double(42))

To allow this program to run correctly with all Parsl executors, the random library must be imported within the app,
and the factor variable must be passed as an argument, as follows.

import random
factor = 5

@python_app
def good_double(factor, x):

import random
return x * random.random() * factor

print(good_double(factor, 42))

File system environment

In a regular Python program the environment that is accessible to a Python program also includes the file system(s) of
the computer on which it is executing. Thus in the following code, a value written to a file “answer.txt” in the current
directory can be retrieved by reading the same file, and the print statement outputs “the answer is 42.”

def print_answer_file():
with open('answer.txt','r') as f:

print('the answer is', f.read())

(continues on next page)

3.1. Overview 21

Parsl Documentation, Release 1.1.0

(continued from previous page)

with open('answer.txt','w') as f:
f.write('42')
f.close()

print_answer_file()

The question of which file system environment is accessible to a Parsl app depends on where the app executes. If two
tasks run on nodes that share a file system, then those tasks (e.g., tasks A and B in the figure below, but not task C)
share a file system environment. Thus the program above will output “the answer is 42” if the parent task and the child
task run on nodes 1 and 2, but not if they run on nodes 2 and 3.

Service Environment

We use the term service environment to refer to network services that may be accessible to a Parsl program, such as a
Redis server or Globus data management service. These services are accessible to any task.

Environment Summary

As we summarize in the table, if tasks execute with the ThreadPoolExecutor, they share the memory and file
system environment of the parent task. If they execute with any other executor, they have a separate memory environ-
ment, and may or may not share their file system environment with other tasks, depending on where they are placed.
All tasks typically have access to the same network services.

22 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

Share memory en-
vironment with par-
ent/other tasks

Share file system
environment with
parent

Share file system environ-
ment with other tasks

Share service
environment
with other tasks

Python
without
Parsl

Yes Yes N/A N/A

Parsl
Thread-
PoolEx-
ecutor

Yes Yes Yes N/A

Other
Parsl
executors

No If executed on the
same node with file
system access

If tasks are executed on the
same node or with access to
the same file system

N/A

3.2 Apps

An app is a Parsl construct for representing a fragment of Python code or external Bash shell code that can be asyn-
chronously executed.

A Parsl app is defined by annotating a Python function with a decorator: the @python_app decorator for a Python
app, the @bash_app decorator for a Bash app, and the @join_app decorator for a Join app.

Python apps encapsulate pure Python code, while Bash apps wrap calls to external applications and scripts, and Join
apps allow composition of other apps to form sub-workflows.

Python and Bash apps are documented below. Join apps are documented in a later section (see Join Apps)

3.2.1 Python Apps

The following code snippet shows a Python function double(x: int), which returns double the input value. The
@python_app decorator defines the function as a Parsl Python app.

@python_app
def double(x):

return x * 2

double(42)

As a Parsl Python app is executed asynchronously, and potentially remotely, the function cannot assume access to
shared program state. For example, it must explicitly import any required modules and cannot refer to variables
used outside the function. Thus while the following code fragment is valid Python, it is not valid Parsl, as the
bad_double() function requires the random module and refers to the external variable factor.

import random
factor = 5

@python_app
def bad_double(x):

return x * random.random() * factor

print(bad_double(42))

3.2. Apps 23

https://docs.python.org/3/library/random.html#module-random

Parsl Documentation, Release 1.1.0

The following alternative formulation is valid Parsl.

import random
factor = 5

@python_app
def good_double(x, f):

import random
return x * random.random() * f

print(good_double(42, factor))

Python apps may be passed any Python input argument, including primitive types, files, and other complex types that
can be serialized (e.g., numpy array, scikit-learn model). They may also be passed a Parsl Future (see Futures)
returned by another Parsl app. In this case, Parsl will establish a dependency between the two apps and will not
execute the dependent app until all dependent futures are resolved. Further detail is provided in Futures.

A Python app may also act upon files. In order to make Parsl aware of these files, they must be specified by using the
inputs and/or outputs keyword arguments, as in following code snippet, which copies the contents of one file
(in.txt) to another (out.txt).

@python_app
def echo(inputs=[], outputs=[]):

with open(inputs[0], 'r') as in_file, open(outputs[0], 'w') as out_file:
out_file.write(in_file.readline())

echo(inputs=[in.txt], outputs=[out.txt])

Special Keyword Arguments

Any Parsl app (a Python function decorated with the @python_app or @bash_app decorator) can use the following
special reserved keyword arguments.

1. inputs: (list) This keyword argument defines a list of input Futures or files. Parsl will wait for the results of any
listed Futures to be resolved before executing the app. The inputs argument is useful both for passing files as
arguments and when one wishes to pass in an arbitrary number of futures at call time.

2. outputs: (list) This keyword argument defines a list of files that will be produced by the app. For each file thus
listed, Parsl will create a future, track the file, and ensure that it is correctly created. The future can then be
passed to other apps as an input argument.

3. walltime: (int) This keyword argument places a limit on the app’s runtime in seconds. If the walltime is exceed,
Parsl will raise an parsl.app.errors.AppTimeout exception.

Returns

A Python app returns an AppFuture (see Futures) as a proxy for the results that will be returned by the app once it
is executed. This future can be inspected to obtain task status; and it can be used to wait for the result, and when
complete, present the output Python object(s) returned by the app. In case of an error or app failure, the future holds
the exception raised by the app.

24 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

Limitations

There are some limitations on the Python functions that can be converted to apps:

1. Functions should act only on defined input arguments. That is, they should not use script-level or global vari-
ables.

2. Functions must explicitly import any required modules.

3. Parsl uses cloudpickle and pickle to serialize Python objects to/from apps. Therefore, Parsl require that all input
and output objects can be serialized by cloudpickle or pickle. See Addressing SerializationError.

4. STDOUT and STDERR produced by Python apps remotely are not captured.

3.2.2 Bash Apps

A Parsl Bash app is used to execute an external application, script, or code written in another language. It is defined
by a @bash_app decorator and the Python code that forms the body of the function must return a fragment of Bash
shell code to be executed by Parsl. The Bash shell code executed by a Bash app can be arbitrarily long.

The following code snippet presents an example of a Bash app echo_hello, which returns the bash command
'echo "Hello World!"' as a string. This string will be executed by Parsl as a Bash command.

@bash_app
def echo_hello(stderr='std.err', stdout='std.out'):

return 'echo "Hello World!"'

echo_hello() when called will execute the shell command and
create a std.out file with the contents "Hello World!"
echo_hello()

Unlike a Python app, a Bash app cannot return Python objects. Instead, Bash apps communicate with other apps
via files. A decorated @bash_app exposes the inputs and outputs keyword arguments described above for
tracking input and output files. It also includes, as described below, keyword arguments for capturing the STDOUT
and STDERR streams and recording them in files that are managed by Parsl.

Special Keywords

In addition to the inputs, outputs, and walltime keyword arguments described above, a Bash app can accept
the following keywords:

1. stdout: (string, tuple or parsl.AUTO_LOGNAME) The path to a file to which standard output should be redi-
rected. If set to parsl.AUTO_LOGNAME, the log will be automatically named according to task id and saved
under task_logs in the run directory. If set to a tuple (filename, mode), standard output will be redi-
rected to the named file, opened with the specified mode as used by the Python open function.

2. stderr: (string or parsl.AUTO_LOGNAME) Like stdout, but for the standard error stream.

3. label: (string) If the app is invoked with stdout=parsl.AUTO_LOGNAME or stderr=parsl.
AUTO_LOGNAME, this arugment will be appended to the log name.

A Bash app can construct the Bash command string to be executed from arguments passed to the decorated function.

@bash_app
def echo(arg, inputs=[], stderr=parsl.AUTO_LOGNAME, stdout=parsl.AUTO_LOGNAME):

return 'echo {} {} {}'.format(arg, inputs[0], inputs[1])

(continues on next page)

3.2. Apps 25

https://github.com/cloudpipe/cloudpickle
https://docs.python.org/3/library/functions.html#open

Parsl Documentation, Release 1.1.0

(continued from previous page)

future = echo('Hello', inputs=['World', '!'])
future.result() # block until task has completed

with open(future.stdout, 'r') as f:
print(f.read()) # prints "Hello World !"

Returns

A Bash app, like a Python app, returns an AppFuture, which can be used to obtain task status, determine when the
app has completed (e.g., via future.result() as in the preceding code fragment), and access exceptions. As a
Bash app can only return results via files specified via outputs, stderr, or stdout; the value returned by the
AppFuture has no meaning.

If the Bash app exits with Unix exit code 0, then the AppFuture will complete. If the Bash app exits with any other
code, Parsl will treat this as a failure, and the AppFuture will instead contain an BashExitFailure exception. The
Unix exit code can be accessed through the exitcode attribute of that BashExitFailure.

Limitations

The following limitation applies to Bash apps:

1. Environment variables are not supported.

3.3 Futures

When an ordinary Python function is invoked in a Python program, the Python interpreter waits for the function to
complete execution before proceeding to the next statement. But if a function is expected to execute for a long period of
time, it may be preferable not to wait for its completion but instead to proceed immediately with executing subsequent
statements. The function can then execute concurrently with that other computation.

Concurrency can be used to enhance performance when independent activities can execute on different cores or nodes
in parallel. The following code fragment demonstrates this idea, showing that overall execution time may be reduced
if the two function calls are executed concurrently.

v1 = expensive_function(1)
v2 = expensive_function(2)
result = v1 + v2

However, concurrency also introduces a need for synchronization. In the example, it is not possible to compute
the sum of v1 and v2 until both function calls have completed. Synchronization provides a way of blocking ex-
ecution of one activity (here, the statement result = v1 + v2) until other activities (here, the two calls to
expensive_function()) have completed.

Parsl supports concurrency and synchronization as follows. Whenever a Parsl program calls a Parsl app (a function
annotated with a Parsl app decorator, see Apps), Parsl will create a new task and immediately return a future in lieu
of that function’s result(s). The program will then continue immediately to the next statement in the program. At some
point, for example when the task’s dependencies are met and there is available computing capacity, Parsl will execute
the task. Upon completion, Parsl will set the value of the future to contain the task’s output.

A future can be used to track the status of an asynchronous task. For example, after creation, the future may be
interrogated to determine the task’s status (e.g., running, failed, completed), access results, and capture exceptions.
Further, futures may be used for synchronization, enabling the calling Python program to block until the future has
completed execution.

26 Chapter 3. User guide

https://en.wikipedia.org/wiki/Futures_and_promises

Parsl Documentation, Release 1.1.0

Parsl provides two types of futures: AppFuture and DataFuture. While related, they enable subtly different
parallel patterns.

3.3.1 AppFutures

AppFutures are the basic building block upon which Parsl programs are built. Every invocation of a Parsl app returns
an AppFuture that may be used to monitor and manage the task’s execution. AppFutures are inherited from Python’s
concurrent library. They provide three key capabilities:

1. An AppFuture’s result() function can be used to wait for an app to complete, and then access any result(s).
This function is blocking: it returns only when the app completes or fails. The following code fragment implements an
example similar to the expensive_function() example above. Here, the sleep_double app simply doubles
the input value. The program invokes the sleep_double app twice, and returns futures in place of results. The
example shows how the future’s result() function can be used to wait for the results from the two sleep_double
app invocations to be computed.

@python_app
def sleep_double(x):

import time
time.sleep(2) # Sleep for 2 seconds
return x*2

Start two concurrent sleep_double apps. doubled_x1 and doubled_x2 are AppFutures
doubled_x1 = sleep_double(10)
doubled_x2 = sleep_double(5)

The result() function will block until each of the corresponding app calls have
→˓completed
print(doubled_x1.result() + doubled_x2.result())

2. An AppFuture’s done() function can be used to check the status of an app, without blocking. The following
example shows that calling the future’s done() function will not stop execution of the main Python program.

@python_app
def double(x):

return x*2

doubled_x is an AppFuture
doubled_x = double(10)

Check status of doubled_x, this will print True if the result is available, else
→˓False
print(doubled_x.done())

3. An AppFuture provides a safe way to handle exceptions and errors while asynchronously executing apps. The
example shows how exceptions can be captured in the same way as a standard Python program when calling the
future’s result() function.

@python_app
def bad_divide(x):

return 6/x

Call bad divide with 0, to cause a divide by zero exception
doubled_x = bad_divide(0)

Catch and handle the exception.

(continues on next page)

3.3. Futures 27

https://docs.python.org/3/library/concurrent.futures.html

Parsl Documentation, Release 1.1.0

(continued from previous page)

try:
doubled_x.result()

except ZeroDivisionError as ze:
print('Oops! You tried to divide by 0')

except Exception as e:
print('Oops! Something really bad happened')

In addition to being able to capture exceptions raised by a specific app, Parsl also raises DependencyErrors when
apps are unable to execute due to failures in prior dependent apps. That is, an app that is dependent upon the successful
completion of another app will fail with a dependency error if any of the apps on which it depends fail.

3.3.2 DataFutures

While an AppFuture represents the execution of an asynchronous app, a DataFuture represents a file to be produced
by that app. Parsl’s dataflow model requires such a construct so that it can determine when dependent apps, apps that
that are to consume a file produced by another app, can start execution.

When calling an app that produces files as outputs, Parsl requires that a list of output files be specified (as a list of
File objects passed in via the outputs keyword argument). Parsl will return a DataFuture for each output file as
part AppFuture when the app is executed. These DataFutures are accessible in the AppFuture’s outputs attribute.

Each DataFuture will complete when the App has finished executing, and the corresponding file has been created (and
if specified, staged out).

When a DataFuture is passed as an argument to a subsequent app invocation, that subsequent app will not begin
execution until the DataFuture is completed. The input argument will then be replaced with an appropriate File object.

The following code snippet shows how DataFutures are used. In this example, the call to the echo Bash app specifies
that the results should be written to an output file (“hello1.txt”). The main program inspects the status of the output
file (via the future’s outputs attribute) and then blocks waiting for the file to be created (hello.outputs[0].
result()).

This app echoes the input string to the first file specified in the
outputs list
@bash_app
def echo(message, outputs=[]):

return 'echo {} &> {}'.format(message, outputs[0])

Call echo specifying the output file
hello = echo('Hello World!', outputs=[File('hello1.txt')])

The AppFuture's outputs attribute is a list of DataFutures
print(hello.outputs)

Print the contents of the output DataFuture when complete
with open(hello.outputs[0].result().filepath, 'r') as f:

print(f.read())

Note: Adding .filepath is only needed on Python 3.5. With Python >= 3.6 the resulting file can be passed to
open directly.

28 Chapter 3. User guide

https://docs.python.org/3/library/functions.html#open

Parsl Documentation, Release 1.1.0

3.4 Passing Python objects

Parsl apps can communicate via standard Python function parameter passing and return statements. The following
example shows how a Python string can be passed to, and returned from, a Parsl app.

@python_app
def example(name):

return 'hello {0}'.format(name)

r = example('bob')
print(r.result())

Parsl uses the cloudpickle and pickle libraries to serialize Python objects into a sequence of bytes that can be passed
over a network from the submitting machine to executing workers.

Thus, Parsl apps can receive and return standard Python data types such as booleans, integers, tuples, lists, and dictio-
naries. However, not all objects can be serialized with these methods (e.g., closures, generators, and system objects),
and so those objects cannot be used with all executors.

Parsl will raise a SerializationError if it encounters an object that it cannot serialize. This applies to objects
passed as arguments to an app, as well as objects returned from an app. See Addressing SerializationError.

3.5 Staging data files

Parsl apps can take and return data files. A file may be passed as an input argument to an app, or returned from an app
after execution. Parsl provides support to automatically transfer (stage) files between the main Parsl program, worker
nodes, and external data storage systems.

Input files can be passed as regular arguments, or a list of them may be specified in the special inputs keyword
argument to an app invocation.

Inside an app, the filepath attribute of a File can be read to determine where on the execution-side file system
the input file has been placed.

Output File objects must also be passed in at app invocation, through the outputs parameter. In this case, the File
object specifies where Parsl should place output after execution.

Inside an app, the filepath attribute of an output File provides the path at which the corresponding output file
should be placed so that Parsl can find it after execution.

If the output from an app is to be used as the input to a subsequent app, then a DataFuture that represents whether
the output file has been created must be extracted from the first app’s AppFuture, and that must be passed to the second
app. This causes app executions to be properly ordered, in the same way that passing AppFutures to subsequent apps
causes execution ordering based on an app returning.

In a Parsl program, file handling is split into two pieces: files are named in an execution-location independent manner
using File objects, and executors are configured to stage those files in to and out of execution locations using
instances of the Staging interface.

3.4. Passing Python objects 29

Parsl Documentation, Release 1.1.0

3.5.1 Parsl files

Parsl uses a custom File to provide a location-independent way of referencing and accessing files. Parsl files are
defined by specifying the URL scheme and a path to the file. Thus a file may represent an absolute path on the
submit-side file system or a URL to an external file.

The scheme defines the protocol via which the file may be accessed. Parsl supports the following schemes: file, ftp,
http, https, and globus. If no scheme is specified Parsl will default to the file scheme.

The following example shows creation of two files with different schemes: a locally-accessible data.txt file and an
HTTPS-accessible README file.

File('file://home/parsl/data.txt')
File('https://github.com/Parsl/parsl/blob/master/README.rst')

Parsl automatically translates the file’s location relative to the environment in which it is accessed (e.g., the Parsl
program or an app). The following example shows how a file can be accessed in the app irrespective of where that app
executes.

@python_app
def print_file(inputs=[]):

with open(inputs[0].filepath, 'r') as inp:
content = inp.read()
return(content)

create an remote Parsl file
f = File('https://github.com/Parsl/parsl/blob/master/README.rst')

call the print_file app with the Parsl file
r = print_file(inputs=[f])

r.result()

As described below, the method by which this files are transferred depends on the scheme and the staging providers
specified in the Parsl configuration.

3.5.2 Staging providers

Parsl is able to transparently stage files between at-rest locations and execution locations by specifying a list of
Staging instances for an executor. These staging instances define how to transfer files in and out of an execution
location. This list should be supplied as the storage_access parameter to an executor when it is constructed.

Parsl includes several staging providers for moving files using the schemes defined above. By default, Parsl executors
are created with three common staging providers: the NoOpFileStaging provider for local and shared file systems and
the HTTP(S) and FTP staging providers for transferring files to and from remote storage locations. The following
example shows how to explicitly set the default staging providers.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.data_manager import default_staging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=default_staging,
equivalent to the following
storage_access=[NoOpFileStaging(), FTPSeparateTaskStaging(),

→˓HTTPSeparateTaskStaging()],
(continues on next page)

30 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

(continued from previous page)

)
]

)

Parsl further differentiates when staging occurs relative to the app invocation that requires or produces files. Staging
either occurs with the executing task (in-task staging) or as a separate task (separate task staging) before app execution.
In-task staging uses a wrapper that is executed around the Parsl task and thus occurs on the resource on which the task
is executed. Separate task staging inserts a new Parsl task in the graph and associates a dependency between the
staging task and the task that depends on that file. Separate task staging may occur on either the submit-side (e.g.,
when using Globus) or on the execution-side (e.g., HTTPS, FTP).

NoOpFileStaging for Local/Shared File Systems

The NoOpFileStaging provider assumes that files specified either with a path or with the file URL scheme are
available both on the submit and execution side. This occurs, for example, when there is a shared file system. In this
case, files will not moved, and the File object simply presents the same file path to the Parsl program and any executing
tasks.

Files defined as follows will be handled by the NoOpFileStaging provider.

File('file://home/parsl/data.txt')
File('/home/parsl/data.txt')

The NoOpFileStaging provider is enabled by default on all executors. It can be explicitly set as the only staging
provider as follows.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.file_noop import NoOpFileStaging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[NoOpFileStaging()]

)
]

)

FTP, HTTP, HTTPS: separate task staging

Files named with the ftp, http or https URL scheme will be staged in using HTTP GET or anonymous FTP
commands. These commands will be executed as a separate Parsl task that will complete before the corresponding
app executes. These providers cannot be used to stage out output files.

The following example defines a file accessible on a remote FTP server.

File('ftp://www.iana.org/pub/mirror/rirstats/arin/ARIN-STATS-FORMAT-CHANGE.txt')

When such a file object is passed as an input to an app, Parsl will download the file to whatever location is selected
for the app to execute. The following example illustrates how the remote file is implicitly downloaded from an FTP
server and then converted. Note that the app does not need to know the location of the downloaded file on the remote
computer, as Parsl abstracts this translation.

3.5. Staging data files 31

Parsl Documentation, Release 1.1.0

@python_app
def convert(inputs=[], outputs=[]):

with open(inputs[0].filepath, 'r') as inp:
content = inp.read()
with open(outputs[0].filepath, 'w') as out:

out.write(content.upper())

create an remote Parsl file
inp = File('ftp://www.iana.org/pub/mirror/rirstats/arin/ARIN-STATS-FORMAT-CHANGE.txt')

create a local Parsl file
out = File('file:///tmp/ARIN-STATS-FORMAT-CHANGE.txt')

call the convert app with the Parsl file
f = convert(inputs=[inp], outputs=[out])
f.result()

HTTP and FTP separate task staging providers can be configured as follows.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.http import HTTPSeparateTaskStaging
from parsl.data_provider.ftp import FTPSeparateTaskStaging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[HTTPSeparateTaskStaging(), FTPSeparateTaskStaging()]

)
]

)

FTP, HTTP, HTTPS: in-task staging

These staging providers are intended for use on executors that do not have a file system shared between each executor
node.

These providers will use the same HTTP GET/anonymous FTP as the separate task staging providers described above,
but will do so in a wrapper around individual app invocations, which guarantees that they will stage files to a file
system visible to the app.

A downside of this staging approach is that the staging tasks are less visible to Parsl, as they are not performed as
separate Parsl tasks.

In-task staging providers can be configured as follows.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.http import HTTPInTaskStaging
from parsl.data_provider.ftp import FTPInTaskStaging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[HTTPInTaskStaging(), FTPInTaskStaging()]

)

(continues on next page)

32 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

(continued from previous page)

]
)

Globus

The Globus staging provider is used to transfer files that can be accessed using Globus. A guide to using Globus is
available here).

A file using the Globus scheme must specify the UUID of the Globus endpoint and a path to the file on the endpoint,
for example:

File('globus://037f054a-15cf-11e8-b611-0ac6873fc732/unsorted.txt')

Note: a Globus endpoint’s UUID can be found in the Globus Manage Endpoints page.

There must also be a Globus endpoint available with access to a execute-side file system, because Globus file transfers
happen between two Globus endpoints.

Globus Configuration

In order to manage where files are staged, users must configure the default working_dir on a remote location. This
information is specified in the ParslExecutor via the working_dir parameter in the Config instance. For
example:

from parsl.config import Config
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
working_dir="/home/user/data"

)
]

)

Parsl requires knowledge of the Globus endpoint that is associated with an executor. This is done by specifying the
endpoint_name (the UUID of the Globus endpoint that is associated with the system) in the configuration.

In some cases, for example when using a Globus shared endpoint or when a Globus endpoint is mounted on a su-
percomputer, the path seen by Globus is not the same as the local path seen by Parsl. In this case the configuration
may optionally specify a mapping between the endpoint_path (the common root path seen in Globus), and the
local_path (the common root path on the local file system), as in the following. In most cases, endpoint_path
and local_path are the same and do not need to be specified.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.globus import GlobusStaging
from parsl.data_provider.data_manager import default_staging

config = Config(
executors=[

HighThroughputExecutor(
working_dir="/home/user/parsl_script",
storage_access=default_staging + [GlobusStaging(

(continues on next page)

3.5. Staging data files 33

https://docs.globus.org/how-to/get-started/
https://app.globus.org/endpoints
https://www.globus.org/data-sharing

Parsl Documentation, Release 1.1.0

(continued from previous page)

endpoint_uuid="7d2dc622-2edb-11e8-b8be-0ac6873fc732",
endpoint_path="/",
local_path="/home/user"

)]
)

]
)

Globus Authorization

In order to transfer files with Globus, the user must first authenticate. The first time that Globus is used with Parsl on
a computer, the program will prompt the user to follow an authentication and authorization procedure involving a web
browser. Users can authorize out of band by running the parsl-globus-auth utility. This is useful, for example, when
running a Parsl program in a batch system where it will be unattended.

$ parsl-globus-auth
Parsl Globus command-line authorizer
If authorization to Globus is necessary, the library will prompt you now.
Otherwise it will do nothing
Authorization complete

rsync

The rsync utility can be used to transfer files in the file scheme in configurations where workers cannot access the
submit-side file system directly, such as when executing on an AWS EC2 instance or on a cluster without a shared file
system. However, the submit-side file system must be exposed using rsync.

rsync Configuration

rsync must be installed on both the submit and worker side. It can usually be installed by using the operating system
package manager: for example, by apt-get install rsync.

An RSyncStaging option must then be added to the Parsl configuration file, as in the following. The parameter
to RSyncStaging should describe the prefix to be passed to each rsync command to connect from workers to the
submit-side host. This will often be the username and public IP address of the submitting system.

from parsl.data_provider.rsync import RSyncStaging

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[HTTPInTaskStaging(), FTPInTaskStaging(), RSyncStaging(

→˓"benc@" + public_ip)],
...

)
)

34 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

rsync Authorization

The rsync staging provider delegates all authentication and authorization to the underlying rsync command. This
command must be correctly authorized to connect back to the submit-side system. The form of this authorization will
depend on the systems in question.

The following example installs an ssh key from the submit-side file system and turns off host key checking, in the
worker_init initialization of an EC2 instance. The ssh key must have sufficient privileges to run rsync over ssh
on the submit-side system.

with open("rsync-callback-ssh", "r") as f:
private_key = f.read()

ssh_init = """
mkdir .ssh
chmod go-rwx .ssh

cat > .ssh/id_rsa <<EOF
{private_key}
EOF

cat > .ssh/config <<EOF
Host *

StrictHostKeyChecking no
EOF

chmod go-rwx .ssh/id_rsa
chmod go-rwx .ssh/config

""".format(private_key=private_key)

config = Config(
executors=[

HighThroughputExecutor(
storage_access=[HTTPInTaskStaging(), FTPInTaskStaging(), RSyncStaging(

→˓"benc@" + public_ip)],
provider=AWSProvider(
...
worker_init = ssh_init
...
)

)
)

3.6 Execution

Contemporary computing environments may include a wide range of computational platforms or execution providers,
from laptops and PCs to various clusters, supercomputers, and cloud computing platforms. Different execution
providers may require or allow for the use of different execution models, such as threads (for efficient parallel execu-
tion on a multicore processor), processes, and pilot jobs for running many small tasks on a large parallel system.

Parsl is designed to abstract these low-level details so that an identical Parsl program can run unchanged on differ-
ent platforms or across multiple platforms. To this end, Parsl uses a configuration file to specify which execution
provider(s) and execution model(s) to use. Parsl provides a high level abstraction, called a block, for providing a
uniform description of a compute resource irrespective of the specific execution provider.

3.6. Execution 35

Parsl Documentation, Release 1.1.0

Note: Refer to Configuration for information on how to configure the various components described below for
specific scenarios.

3.6.1 Execution providers

Clouds, supercomputers, and local PCs offer vastly different modes of access. To overcome these differences, and
present a single uniform interface, Parsl implements a simple provider abstraction. This abstraction is key to Parsl’s
ability to enable scripts to be moved between resources. The provider interface exposes three core actions: submit a
job for execution (e.g., sbatch for the Slurm resource manager), retrieve the status of an allocation (e.g., squeue), and
cancel a running job (e.g., scancel). Parsl implements providers for local execution (fork), for various cloud platforms
using cloud-specific APIs, and for clusters and supercomputers that use a Local Resource Manager (LRM) to manage
access to resources, such as Slurm, HTCondor, and Cobalt.

Each provider implementation may allow users to specify additional parameters for further configuration. Parameters
are generally mapped to LRM submission script or cloud API options. Examples of LRM-specific options are partition,
wall clock time, scheduler options (e.g., #SBATCH arguments for Slurm), and worker initialization commands (e.g.,
loading a conda environment). Cloud parameters include access keys, instance type, and spot bid price

Parsl currently supports the following providers:

1. LocalProvider: The provider allows you to run locally on your laptop or workstation.

2. CobaltProvider: This provider allows you to schedule resources via the Cobalt scheduler.

3. SlurmProvider: This provider allows you to schedule resources via the Slurm scheduler.

4. CondorProvider: This provider allows you to schedule resources via the Condor scheduler.

5. GridEngineProvider: This provider allows you to schedule resources via the GridEngine scheduler.

6. TorqueProvider: This provider allows you to schedule resources via the Torque scheduler.

7. AWSProvider: This provider allows you to provision and manage cloud nodes from Amazon Web Services.

8. GoogleCloudProvider: This provider allows you to provision and manage cloud nodes from Google
Cloud.

9. KubernetesProvider: This provider allows you to provision and manage containers on a Kubernetes
cluster.

10. AdHocProvider: This provider allows you manage execution over a collection of nodes to form an ad-hoc
cluster.

11. LSFProvider: This provider allows you to schedule resources via IBM’s LSF scheduler

3.6.2 Executors

Parsl programs vary widely in terms of their execution requirements. Individual Apps may run for milliseconds or
days, and available parallelism can vary between none for sequential programs to millions for “pleasingly parallel”
programs. Parsl executors, as the name suggests, execute Apps on one or more target execution resources such as
multi-core workstations, clouds, or supercomputers. As it appears infeasible to implement a single execution strategy
that will meet so many diverse requirements on such varied platforms, Parsl provides a modular executor interface and
a collection of executors that are tuned for common execution patterns.

Parsl executors extend the Executor class offered by Python’s concurrent.futures library, which allows Parsl to use
existing solutions in the Python Standard Library (e.g., ThreadPoolExecutor) and from other packages such as IPy-
Parallel. Parsl extends the concurrent.futures executor interface to support additional capabilities such as automatic

36 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

scaling of execution resources, monitoring, deferred initialization, and methods to set working directories. All ex-
ecutors share a common execution kernel that is responsible for deserializing the task (i.e., the App and its input
arguments) and executing the task in a sandboxed Python environment.

Parsl currently supports the following executors:

1. ThreadPoolExecutor: This executor supports multi-thread execution on local resources.

2. HighThroughputExecutor: This executor implements hierarchical scheduling and batching using a pilot
job model to deliver high throughput task execution on up to 4000 Nodes.

3. WorkQueueExecutor: [Beta] This executor integrates Work Queue as an execution backend. Work Queue
scales to tens of thousands of cores and implements reliable execution of tasks with dynamic resource sizing.

4. ExtremeScaleExecutor: [Beta] The ExtremeScaleExecutor uses mpi4py to scale to 4000+ nodes. This
executor is typically used for executing on supercomputers.

These executors cover a broad range of execution requirements. As with other Parsl components, there is a standard
interface (ParslExecutor) that can be implemented to add support for other executors.

Note: Refer to Configuration for information on how to configure these executors.

3.6.3 Launchers

Many LRMs offer mechanisms for spawning applications across nodes inside a single job and for specifying the
resources and task placement information needed to execute that application at launch time. Common mechanisms
include srun (for Slurm), aprun (for Crays), and mpirun (for MPI). Thus, to run Parsl programs on such systems, we
typically want first to request a large number of nodes and then to launch “pilot job” or worker processes using the
system launchers. Parsl’s Launcher abstraction enables Parsl programs to use these system-specific launcher systems
to start workers across cores and nodes.

Parsl currently supports the following set of launchers:

1. SrunLauncher: Srun based launcher for Slurm based systems.

2. AprunLauncher: Aprun based launcher for Crays.

3. SrunMPILauncher: Launcher for launching MPI applications with Srun.

4. GnuParallelLauncher: Launcher using GNU parallel to launch workers across nodes and cores.

5. MpiExecLauncher: Uses Mpiexec to launch.

6. SimpleLauncher: The launcher default to a single worker launch.

7. SingleNodeLauncher: This launcher launches workers_per_node count workers on a single node.

Additionally, the launcher interface can be used to implement specialized behaviors in custom environments (for exam-
ple, to launch node processes inside containers with customized environments). For example, the following launcher
uses Srun to launch worker-wrapper, passing the command to be run as parameters to worker-wrapper. It is
the responsibility of worker-wrapper to launch the command it is given inside the appropriate environment.

class MyShifterSRunLauncher:
def __init__(self):

self.srun_launcher = SrunLauncher()

def __call__(self, command, tasks_per_node, nodes_per_block):
new_command="worker-wrapper {}".format(command)
return self.srun_launcher(new_command, tasks_per_node, nodes_per_block)

3.6. Execution 37

http://ccl.cse.nd.edu/software/workqueue/
https://mpi4py.readthedocs.io/en/stable/
https://slurm.schedmd.com/srun.html
https://cug.org/5-publications/proceedings_attendee_lists/2006CD/S06_Proceedings/pages/Authors/Karo-4C/Karo_alps_paper.pdf
https://www.open-mpi.org/doc/v2.0/man1/mpirun.1.php

Parsl Documentation, Release 1.1.0

3.6.4 Blocks

One challenge when making use of heterogeneous execution resource types is the need to provide a uniform repre-
sentation of resources. Consider that single requests on clouds return individual nodes, clusters and supercomputers
provide batches of nodes, grids provide cores, and workstations provide a single multicore node

Parsl defines a resource abstraction called a block as the most basic unit of resources to be acquired from a provider.
A block contains one or more nodes and maps to the different provider abstractions. In a cluster, a block corresponds
to a single allocation request to a scheduler. In a cloud, a block corresponds to a single API request for one or more
instances. Parsl can then execute tasks (instances of apps) within and across (e.g., for MPI jobs) nodes within a block.
Blocks are also used as the basis for elasticity on batch scheduling systems (see Elasticity below). Three different
examples of block configurations are shown below.

1. A single block comprised of a node executing one task:

2. A single block with one node executing several tasks. This configuration is most suitable for single threaded
apps running on multicore target systems. The number of tasks executed concurrently is proportional to the
number of cores available on the system.

3. A block comprised of several nodes and executing several tasks, where a task can span multiple nodes. This
configuration is generally used by MPI applications. Starting a task requires using a specific MPI launcher that
is supported on the target system (e.g., aprun, srun, mpirun, mpiexec).

38 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

The configuration options for specifying the shape of each block are:

1. workers_per_node: Number of workers started per node, which corresponds to the number of tasks that
can execute concurrently on a node.

2. nodes_per_block: Number of nodes requested per block.

3.6.5 Elasticity

Workload resource requirements often vary over time. For example, in the map-reduce paradigm the map phase may
require more resources than the reduce phase. In general, reserving sufficient resources for the widest parallelism
will result in underutilization during periods of lower load; conversely, reserving minimal resources for the thinnest
parallelism will lead to optimal utilization but also extended execution time. Even simple bag-of-task applications
may have tasks of different durations, leading to trailing tasks with a thin workload.

To address dynamic workload requirements, Parsl implements a cloud-like elasticity model in which resource blocks
are provisioned/deprovisioned in response to workload pressure. Parsl provides an extensible strategy interface by
which users can implement their own elasticity logic. Given the general nature of the implementation, Parsl can
provide elastic execution on clouds, clusters, and supercomputers. Of course, in an HPC setting, elasticity may be
complicated by queue delays.

Parsl’s elasticity model includes an extensible flow control system that monitors outstanding tasks and available com-
pute capacity. This flow control monitor, which can be extended or implemented by users, determines when to trigger
scaling (in or out) events to match workload needs.

The animated diagram below shows how blocks are elastically managed within an executor. The Parsl configuration
for an executor defines the minimum, maximum, and initial number of blocks to be used.

The configuration options for specifying elasticity bounds are:

1. min_blocks: Minimum number of blocks to maintain per executor.

3.6. Execution 39

Parsl Documentation, Release 1.1.0

2. init_blocks: Initial number of blocks to provision at initialization of workflow.

3. max_blocks: Maximum number of blocks that can be active per executor.

Parallelism

Parsl provides a user-managed model for controlling elasticity. In addition to setting the minimum and maximum
number of blocks to be provisioned, users can also define the desired level of parallelism by setting a parameter (p).
Parallelism is expressed as the ratio of task execution capacity to the sum of running tasks and available tasks (tasks
with their dependencies met, but waiting for execution). A parallelism value of 1 represents aggressive scaling where
the maximum resources needed are used (i.e., max_blocks); parallelism close to 0 represents the opposite situation
in which as few resources as possible (i.e., min_blocks) are used. By selecting a fraction between 0 and 1, the
provisioning aggressiveness can be controlled.

For example:

• When p = 0: Use the fewest resources possible. If there is no workload then no blocks will be provisioned,
otherwise the fewest blocks specified (e.g., min_blocks, or 1 if min_blocks is set to 0) will be provisioned.

if active_tasks == 0:
blocks = min_blocks

else:
blocks = max(min_blocks, 1)

• When p = 1: Use as many resources as possible. Provision sufficient nodes to execute all running and available
tasks concurrently up to the max_blocks specified.

blocks = min(max_blocks,
ceil((running_tasks + available_tasks) / (workers_per_node * nodes_per_

→˓block))

• When p = 1/2: Queue up to 2 tasks per worker before requesting a new block.

Configuration

The example below shows how elasticity and parallelism can be configured. Here, a HighThroughputExecutor
is used with a minimum of 1 block and a maximum of 2 blocks, where each block may host up to 2 workers per node.
Thus this setup is capable of servicing 2 tasks concurrently. Parallelism of 0.5 means that when more than 2 * the total
task capacity (i.e., 4 tasks) are queued a new block will be requested. An example Config is:

from parsl.config import Config
from libsubmit.providers.local.local import Local
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='local_htex',
workers_per_node=2,
provider=Local(

min_blocks=1,
init_blocks=1,
max_blocks=2,
nodes_per_block=1,
parallelism=0.5

)

(continues on next page)

40 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

(continued from previous page)

)
]

)

The animated diagram below illustrates the behavior of this executor. In the diagram, the tasks are allocated to the
first block, until 5 tasks are submitted. At this stage, as more than double the available task capacity is used, Parsl
provisions a new block for executing the remaining tasks.

3.6.6 Multi-executor

Parsl supports the use of one or more executors as specified in the configuration. In this situation, individual apps may
indicate which executors they are able to use.

The common scenarios for this feature are:

• A workflow has an initial simulation stage that runs on the compute heavy nodes of an HPC system followed by
an analysis and visualization stage that is better suited for GPU nodes.

• A workflow follows a repeated fan-out, fan-in model where the long running fan-out tasks are computed on a
cluster and the quick fan-in computation is better suited for execution using threads on a login node.

• A workflow includes apps that wait and evaluate the results of a computation to determine whether the app
should be relaunched. Only apps running on threads may launch other apps. Often, simulations have stochastic
behavior and may terminate before completion. In such cases, having a wrapper app that checks the exit code
and determines whether or not the app has completed successfully can be used to automatically re-execute the
app (possibly from a checkpoint) until successful completion.

The following code snippet shows how apps can specify suitable executors in the app decorator.

#(CPU heavy app) (CPU heavy app) (CPU heavy app) <--- Run on compute queue
| | |
(data) (data) (data)
\ | /
(Analysis and visualization phase) <--- Run on GPU node

A mock molecular dynamics simulation app
@bash_app(executors=["Theta.Phi"])
def MD_Sim(arg, outputs=[]):

return "MD_simulate {} -o {}".format(arg, outputs[0])

Visualize results from the mock MD simulation app
@bash_app(executors=["Cooley.GPU"])
def visualize(inputs=[], outputs=[]):

bash_array = " ".join(inputs)
return "viz {} -o {}".format(bash_array, outputs[0])

3.6. Execution 41

Parsl Documentation, Release 1.1.0

3.7 Error handling

Parsl provides various mechanisms to add resiliency and robustness to programs.

3.7.1 Exceptions

Parsl is designed to capture, track, and handle various errors occurring during execution, including those related to
the program, apps, execution environment, and Parsl itself. It also provides functionality to appropriately respond to
failures during execution.

Failures might occur for various reasons:

1. A task failed during execution.

2. A task failed to launch, for example, because an input dependency was not met.

3. There was a formatting error while formatting the command-line string in Bash apps.

4. A task completed execution but failed to produce one or more of its specified outputs.

5. Task exceeded the specified walltime.

Since Parsl tasks are executed asynchronously and remotely, it can be difficult to determine when errors have occurred
and to appropriately handle them in a Parsl program.

For errors occurring in Python code, Parsl captures Python exceptions and returns them to the main Parsl program.
For non-Python errors, for example when a node or worker fails, Parsl imposes a timeout, and considers a task to have
failed if it has not heard from the task by that timeout. Parsl also considers a task to have failed if it does not meet the
contract stated by the user during invocation, such as failing to produce the stated output files.

Parsl communicates these errors by associating Python exceptions with task futures. These exceptions are raised only
when a result is called on the future of a failed task. For example:

@python_app
def bad_divide(x):

return 6 / x

Call bad divide with 0, to cause a divide by zero exception
doubled_x = bad_divide(0)

Catch and handle the exception.
try:

doubled_x.result()
except ZeroDivisionError as e:

print('Oops! You tried to divide by 0.')
except Exception as e:

print('Oops! Something really bad happened.')

42 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

3.7.2 Retries

Often errors in distributed/parallel environments are transient. In these cases, retrying failed tasks can be a simple way
of overcoming transient (e.g., machine failure, network failure) and intermittent failures. When retries are enabled
(and set to an integer > 0), Parsl will automatically re-launch tasks that have failed until the retry limit is reached. By
default, retries are disabled and exceptions will be communicated to the Parsl program.

The following example shows how the number of retries can be set to 2:

import parsl
from parsl.configs.htex_local import config

config.retries = 2

parsl.load(config)

3.7.3 Lazy fail

Parsl implements a lazy failure model through which a workload will continue to execute in the case that some tasks
fail. That is, the program will not halt as soon as it encounters a failure, rather it will continue to execute unaffected
apps.

The following example shows how lazy failures affect execution. In this case, task C fails and therefore tasks E and F
that depend on results from C cannot be executed; however, Parsl will continue to execute tasks B and D as they are
unaffected by task C’s failure.

Here's a workflow graph, where
(X) is runnable,
[X] is completed,
(X*) is failed.
(!X) is dependency failed

(A) [A] (A)
/ \ / \ / \

(B) (C) [B] (C*) [B] (C*)
| | => | | => | |

(D) (E) (D) (E) [D] (!E)
\ / \ / \ /
(F) (F) (!F)

time ----->

3.8 Memoization and checkpointing

When an app is invoked several times with the same parameters, Parsl can reuse the result from the first invocation
without executing the app again.

This can save time and computational resources.

This is done in two ways:

• Firstly, app caching will allow reuse of results within the same run.

• Building on top of that, checkpointing will store results on the filesystem and reuse those results in later runs.

3.8. Memoization and checkpointing 43

Parsl Documentation, Release 1.1.0

3.8.1 App caching

There are many situations in which a program may be re-executed over time. Often, large fragments of the program
will not have changed and therefore, re-execution of apps will waste valuable time and computation resources. Parsl’s
app caching solves this problem by storing results from apps that have successfully completed so that they can be
re-used.

App caching is enabled by setting the cache argument in the python_app() or bash_app() decorator to True
(by default it is False).

@bash_app(cache=True)
def hello (msg, stdout=None):

return 'echo {}'.format(msg)

App caching can be globally disabled by setting app_cache=False in the Config.

App caching can be particularly useful when developing interactive programs such as when using a Jupyter notebook.
In this case, cells containing apps are often re-executed during development. Using app caching will ensure that only
modified apps are re-executed.

App equivalence

Parsl determines app equivalence by storing the a hash of the app function. Thus, any changes to the app code (e.g.,
its signature, its body, or even the docstring within the body) will invalidate cached values.

However, Parsl does not traverse the call graph of the app function, so changes inside functions called by an app will
not invalidate cached values.

Invocation equivalence

Two app invocations are determined to be equivalent if their input arguments are identical.

In simple cases, this follows obvious rules:

these two app invocations are the same and the second invocation will
reuse any cached input from the first invocation
x = 7
f(x).result()

y = 7
f(y).result()

Internally, equivalence is determined by hashing the input arguments, and comparing the hash to hashes from previous
app executions.

This approach can only be applied to data types for which a deterministic hash can be computed.

By default Parsl can compute sensible hashes for basic data types: str, int, float, None, as well as more some complex
types: functions, and dictionaries and lists containing hashable types.

Attempting to cache apps invoked with other, non-hashable, data types will lead to an exception at invocation.

In that case, mechanisms to hash new types can be registered by a program by implementing the parsl.dataflow.
memoization.id_for_memo function for the new type.

44 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

Ignoring arguments

On occasion one may wish to ignore particular arguments when determining app invocation equivalence - for example,
when generating log file names automatically based on time or run information. Parsl allows developers to list the
arguments to be ignored in the ignore_for_cache app decorator parameter:

@bash_app(cache=True, ignore_for_cache=['stdout'])
def hello (msg, stdout=None):

return 'echo {}'.format(msg)

Caveats

It is important to consider several important issues when using app caching:

• Determinism: App caching is generally useful only when the apps are deterministic. If the outputs may be
different for identical inputs, app caching will obscure this non-deterministic behavior. For instance, caching an
app that returns a random number will result in every invocation returning the same result.

• Timing: If several identical calls to an app are made concurrently having not yet cached a result, many instances
of the app will be launched. Once one invocation completes and the result is cached all subsequent calls will
return immediately with the cached result.

• Performance: If app caching is enabled, there may be some performance overhead especially if a large number
of short duration tasks are launched rapidly. This overhead has not been quantified.

3.8.2 Checkpointing

Large-scale Parsl programs are likely to encounter errors due to node failures, application or environment errors, and
myriad other issues. Parsl offers an application-level checkpointing model to improve resilience, fault tolerance, and
efficiency.

Note: Checkpointing builds on top of app caching, and so app caching must be enabled. If app caching is disabled in
the config Config.app_cache, checkpointing will not work.

Parsl follows an incremental checkpointing model, where each checkpoint file contains all results that have been
updated since the last checkpoint.

When a Parsl program loads a checkpoint file and is executed, it will use checkpointed results for any apps that have
been previously executed. Like app caching, checkpoints use the hash of the app and the invocation input parameters
to identify previously computed results. If multiple checkpoints exist for an app (with the same hash) the most recent
entry will be used.

Parsl provides four checkpointing modes:

1. task_exit: a checkpoint is created each time an app completes or fails (after retries if enabled). This mode
minimizes the risk of losing information from completed tasks.

>>> from parsl.configs.local_threads import config
>>> config.checkpoint_mode = 'task_exit'

2. periodic: a checkpoint is created periodically using a user-specified checkpointing interval. Results will be
saved to the checkpoint file for all tasks that have completed during this period.

3.8. Memoization and checkpointing 45

Parsl Documentation, Release 1.1.0

>>> from parsl.configs.local_threads import config
>>> config.checkpoint_mode = 'periodic'
>>> config.checkpoint_period = "01:00:00"

3. dfk_exit: checkpoints are created when Parsl is about to exit. This reduces the risk of losing results due
to premature program termination from exceptions, terminate signals, etc. However it is still possible that
information might be lost if the program is terminated abruptly (machine failure, SIGKILL, etc.)

>>> from parsl.configs.local_threads import config
>>> config.checkpoint_mode = 'dfk_exit'

4. Manual: in addition to these automated checkpointing modes, it is also possible to manually initiate a checkpoint
by calling DataFlowKernel.checkpoint() in the Parsl program code.

>>> import parsl
>>> from parsl.configs.local_threads import config
>>> dfk = parsl.load(config)
>>>
>>> dfk.checkpoint()

In all cases the checkpoint file is written out to the runinfo/RUN_ID/checkpoint/ directory.

Note: Checkpoint modes periodic, dfk_exit, and manual can interfere with garbage collection. In these
modes task information will be retained after completion, until checkpointing events are triggered.

Creating a checkpoint

Automated checkpointing must be explicitly enabled in the Parsl configuration. There is no need to modify a Parsl
program as checkpointing will occur transparently. In the following example, checkpointing is enabled at task exit.
The results of each invocation of the slow_double app will be stored in the checkpoint file.

import parsl
from parsl.app.app import python_app
from parsl.configs.local_threads import config

config.checkpoint_mode = 'task_exit'

parsl.load(config)

@python_app(cache=True)
def slow_double(x):

import time
time.sleep(5)
return x * 2

d = []
for i in range(5):

d.append(slow_double(i))

print([d[i].result() for i in range(5)])

Alternatively, manual checkpointing can be used to explictly specify when the checkpoint file should be saved. The
following example shows how manual checkpointing can be used. Here, the dfk.checkpoint() function will
save the results of the prior invocations of the slow_double app.

46 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

import parsl
from parsl import python_app
from parsl.configs.local_threads import config

dfk = parsl.load(config)

@python_app(cache=True)
def slow_double(x, sleep_dur=1):

import time
time.sleep(sleep_dur)
return x * 2

N = 5 # Number of calls to slow_double
d = [] # List to store the futures
for i in range(0, N):

d.append(slow_double(i))

Wait for the results
[i.result() for i in d]

cpt_dir = dfk.checkpoint()
print(cpt_dir) # Prints the checkpoint dir

Resuming from a checkpoint

When resuming a program from a checkpoint Parsl allows the user to select which checkpoint file(s) to use. Checkpoint
files are stored in the runinfo/RUNID/checkpoint directory.

The example below shows how to resume using all available checkpoints. Here, the program re-executes the same calls
to the slow_double app as above and instead of waiting for results to be computed, the values from the checkpoint
file are are immediately returned.

import parsl
from parsl.tests.configs.local_threads import config
from parsl.utils import get_all_checkpoints

config.checkpoint_files = get_all_checkpoints()

parsl.load(config)

Rerun the same workflow
d = []
for i in range(5):

d.append(slow_double(i))

wait for results
print([d[i].result() for i in range(5)])

3.8. Memoization and checkpointing 47

Parsl Documentation, Release 1.1.0

3.9 Configuration

Parsl separates program logic from execution configuration, enabling programs to be developed entirely independently
from their execution environment. Configuration is described by a Python object (Config) so that developers can
introspect permissible options, validate settings, and retrieve/edit configurations dynamically during execution. A
configuration object specifies details of the provider, executors, connection channel, allocation size, queues, durations,
and data management options.

The following example shows a basic configuration object (Config) for the Frontera supercomputer at TACC. This
config uses the HighThroughputExecutor to submit tasks from a login node (LocalChannel). It requests an
allocation of 128 nodes, deploying 1 worker for each of the 56 cores per node, from the normal partition. The config
uses the address_by_hostname() helper function to determine the login node’s IP address.

from parsl.config import Config
from parsl.channels import LocalChannel
from parsl.providers import SlurmProvider
from parsl.executors import HighThroughputExecutor
from parsl.launchers import SrunLauncher
from parsl.addresses import address_by_hostname

config = Config(
executors=[

HighThroughputExecutor(
label="frontera_htex",
address=address_by_hostname(),
max_workers=56,
provider=SlurmProvider(

channel=LocalChannel(),
nodes_per_block=128,
init_blocks=1,
partition='normal',
launcher=SrunLauncher(),

),
)

],
)

Configuration How-To and Examples:

• Configuration

– How to Configure

– Heterogeneous Resources

– Ad-Hoc Clusters

– Amazon Web Services

– ASPIRE 1 (NSCC)

– Blue Waters (NCSA)

– Bridges (PSC)

– CC-IN2P3

– CCL (Notre Dame, with Work Queue)

48 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

– Comet (SDSC)

– Cooley (ALCF)

– Cori (NERSC)

– Frontera (TACC)

– Kubernetes Clusters

– Midway (RCC, UChicago)

– Open Science Grid

– Stampede2 (TACC)

– Summit (ORNL)

– Theta (ALCF)

– Further help

Note: All configuration examples below must be customized for the user’s allocation, Python environment, file
system, etc.

3.9.1 How to Configure

The configuration specifies what, and how, resources are to be used for executing the Parsl program and its apps. It
is important to carefully consider the needs of the Parsl program and its apps, and the characteristics of the compute
resources, to determine an ideal configuration. Aspects to consider include: 1) where the Parsl apps will execute; 2)
how many nodes will be used to execute the apps, and how long the apps will run; 3) should Parsl request multiple
nodes in an individual scheduler job; and 4) where will the main Parsl program run and how will it communicate with
the apps.

Stepping through the following question should help formulate a suitable configuration object.

1. Where should apps be executed?

3.9. Configuration 49

Parsl Documentation, Release 1.1.0

Target Executor Provider
Laptop/Workstation •

HighThroughputExecutor
• ThreadPoolExecutor
• WorkQueueExecutor

beta

LocalProvider

Amazon Web Services •
HighThroughputExecutor

AWSProvider

Google Cloud •
HighThroughputExecutor

GoogleCloudProvider

Slurm based system •
ExtremeScaleExecutor

•
HighThroughputExecutor

• WorkQueueExecutor
beta

SlurmProvider

Torque/PBS based system •
ExtremeScaleExecutor

•
HighThroughputExecutor

• WorkQueueExecutor
beta

TorqueProvider

Cobalt based system •
ExtremeScaleExecutor

•
HighThroughputExecutor

• WorkQueueExecutor
beta

CobaltProvider

GridEngine based system •
HighThroughputExecutor

• WorkQueueExecutor
beta

GridEngineProvider

Condor based cluster or grid •
HighThroughputExecutor

• WorkQueueExecutor
beta

CondorProvider

Kubernetes cluster •
HighThroughputExecutor

KubernetesProvider

WorkQueueExecutor is available in v1.0.0 in beta status.

50 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

2. How many nodes will be used to execute the apps? What task durations are necessary to achieve good perfor-
mance?

Executor Number of
Nodes*0

Task duration for good performance

*ThreadPoolExecutor 1 (Only local) Any
HighThroughputExecutor<=2000 Task duration(s)/#nodes >= 0.01 longer tasks needed at

higher scale
ExtremeScaleExecutor >1000, <=8000†0 >minutes
WorkQueueExecutor <=1000‡0 10s+

Warning: IPyParallelExecutor is deprecated as of Parsl v0.8.0. HighThroughputExecutor is the
recommended replacement.

3. Should Parsl request multiple nodes in an individual scheduler job? (Here the term block is equivalent to a single
scheduler job.)

nodes_per_block = 1
Provider Executor choice Suitable Launchers
Systems that don’t use Aprun Any

• SingleNodeLauncher
• SimpleLauncher

Aprun based systems Any
• AprunLauncher

nodes_per_block > 1
Provider Executor choice Suitable Launchers
TorqueProvider Any

• AprunLauncher
• MpiExecLauncher

CobaltProvider Any
• AprunLauncher

SlurmProvider Any
• SrunLauncher if native

slurm
• AprunLauncher, other-

wise

Note: If using a Cray system, you most likely need to use the AprunLauncher to launch workers unless you are
on a native Slurm system like Cori (NERSC)

4) Where will the main Parsl program run and how will it communicate with the apps?

0 Assuming 32 workers per node. If there are fewer workers launched per node, a larger number of nodes could be supported.
0 8,000 nodes with 32 workers (256,000 workers) is the maximum scale at which the ExtremeScaleExecutor has been tested.
0 The maximum number of nodes tested for the WorkQueueExecutor is 10,000 GPU cores and 20,000 CPU cores.

3.9. Configuration 51

Parsl Documentation, Release 1.1.0

Parsl program location App execution target Suitable channel
Laptop/Workstation Laptop/Workstation LocalChannel
Laptop/Workstation Cloud Resources No channel is needed
Laptop/Workstation Clusters with no 2FA SSHChannel
Laptop/Workstation Clusters with 2FA SSHInteractiveLoginChannel
Login node Cluster/Supercomputer LocalChannel

3.9.2 Heterogeneous Resources

In some cases, it can be difficult to specify the resource requirements for running a workflow. For example, if the
compute nodes a site provides are not uniform, there is no “correct” resource configuration; the amount of parallelism
depends on which node (large or small) each job runs on. In addition, the software and filesystem setup can vary from
node to node. A Condor cluster may not provide shared filesystem access at all, and may include nodes with a variety
of Python versions and available libraries.

The WorkQueueExecutor provides several features to work with heterogeneous resources. By default, Parsl only
runs one app at a time on each worker node. However, it is possible to specify the requirements for a particular
app, and Work Queue will automatically run as many parallel instances as possible on each node. Work Queue
automatically detects the amount of cores, memory, and other resources available on each execution node. To activate
this feature, add a resource specification to your apps. A resource specification is a dictionary with the following three
(case-insensitive) keys: cores (an integer corresponding to the number of cores required by the task), memory (an
integer corresponding to the task’s memory requirement in MB), and disk (an integer corresponding to the task’s disk
requirement in MB), passed to an app via the special keyword argument parsl_resource_specification.
The specification can be set for all app invocations via a default, for example:

@python_app
def compute(x, parsl_resource_specification={'cores': 1, 'memory': 1000,
→˓'disk': 1000}):

return x*2

or updated when the app is invocated:

spec = {'cores': 1, 'memory': 500, 'disk': 500}
future = compute(x, parsl_resource_specification=spec)

This parsl_resource_specification special keyword argument will inform Work Queue about the resources
this app requires. When placing instances of compute(x), Work Queue will run as many parallel instances as
possible based on each worker node’s available resources.

If an app’s resource requirements are not known in advance, Work Queue has an auto-labeling feature that measures
the actual resource usage of your apps and automatically chooses resource labels for you. With auto-labeling, it is
not necessary to provide parsl_resource_specification; Work Queue collects stats in the background and
updates resource labels as your workflow runs. To activate this feature, add the following flags to your executor config:

config = Config(
executors=[

WorkQueueExecutor(
...other options go here
autolabel=True,
autocategory=True

)
]

)

52 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

The autolabel flag tells Work Queue to automatically generate resource labels. By default, these labels are shared
across all apps in your workflow. The autocategory flag puts each app into a different category, so that Work
Queue will choose separate resource requirements for each app. This is important if e.g. some of your apps use a
single core and some apps require multiple cores. Unless you know that all apps have uniform resource requirements,
you should turn on autocategory when using autolabel.

The Work Queue executor can also help deal with sites that have non-uniform software environments across nodes.
Parsl assumes that the Parsl program and the compute nodes all use the same Python version. In addition, any packages
your apps import must be available on compute nodes. If no shared filesystem is available or if node configuration
varies, this can lead to difficult-to-trace execution problems.

If your Parsl program is running in a Conda environment, the Work Queue executor can automatically scan the imports
in your apps, create a self-contained software package, transfer the software package to worker nodes, and run your
code inside the packaged and uniform environment. First, make sure that the Conda environment is active and you
have the required packages installed (via either pip or conda):

• python

• parsl

• ndcctools

• conda-pack

Then add the following to your config:

config = Config(
executors=[

WorkQueueExecutor(
...other options go here
pack=True

)
]

)

Note: There will be a noticeable delay the first time Work Queue sees an app; it is creating and packaging a complete
Python environment. This packaged environment is cached, so subsequent app invocations should be much faster.

Using this approach, it is possible to run Parsl applications on nodes that don’t have Python available at all. The
packaged environment includes a Python interpreter, and Work Queue does not require Python to run.

Note: The automatic packaging feature only supports packages installed via pip or conda. Importing from other
locations (e.g. via $PYTHONPATH) or importing other modules in the same directory is not supported.

3.9.3 Ad-Hoc Clusters

Any collection of compute nodes without a scheduler can be considered an ad-hoc cluster. Often these machines
have a shared file system such as NFS or Lustre. In order to use these resources with Parsl, they need to set-up for
password-less SSH access.

To use these ssh-accessible collection of nodes as an ad-hoc cluster, we create an executor for each node, using the
LocalProvider with SSHChannel to identify the node by hostname. An example configuration follows.

3.9. Configuration 53

Parsl Documentation, Release 1.1.0

from parsl.providers import AdHocProvider
from parsl.channels import SSHChannel
from parsl.executors import HighThroughputExecutor
from parsl.config import Config

user_opts = {'adhoc':
{'username': 'YOUR_USERNAME',
'script_dir': 'YOUR_SCRIPT_DIR',
'remote_hostnames': ['REMOTE_HOST_URL_1', 'REMOTE_HOST_URL_2']
}

}

config = Config(
executors=[

HighThroughputExecutor(
label='remote_htex',
max_workers=2,
worker_logdir_root=user_opts['adhoc']['script_dir'],
provider=AdHocProvider(

Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
channels=[SSHChannel(hostname=m,

username=user_opts['adhoc']['username'],
script_dir=user_opts['adhoc']['script_dir'],

) for m in user_opts['adhoc']['remote_hostnames']]
)

)
],
AdHoc Clusters should not be setup with scaling strategy.
strategy=None,

)

Note: Multiple blocks should not be assigned to each node when using the HighThroughputExecutor

Note: Load-balancing will not work properly with this approach. In future work, a dedicated provider that supports
load-balancing will be implemented. You can follow progress on this work in issue #941.

54 Chapter 3. User guide

https://github.com/Parsl/parsl/issues/941

Parsl Documentation, Release 1.1.0

3.9.4 Amazon Web Services

Note: To use AWS with Parsl, install Parsl with AWS dependencies via python3 -m pip install
parsl[aws]

Amazon Web Services is a commercial cloud service which allows users to rent a range of computers and other
computing services. The following snippet shows how Parsl can be configured to provision nodes from the Elastic
Compute Cloud (EC2) service. The first time this configuration is used, Parsl will configure a Virtual Private Cloud
and other networking and security infrastructure that will be re-used in subsequent executions. The configuration uses
the AWSProvider to connect to AWS.

from parsl.config import Config
from parsl.providers import AWSProvider
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='ec2_single_node',
provider=AWSProvider(

Specify your EC2 AMI id
'YOUR_AMI_ID',
Specify the AWS region to provision from
eg. us-east-1
region='YOUR_AWS_REGION',

Specify the name of the key to allow ssh access to nodes
key_name='YOUR_KEY_NAME',
profile="default",
state_file='awsproviderstate.json',
nodes_per_block=1,
init_blocks=1,
max_blocks=1,
min_blocks=0,
walltime='01:00:00',

),
)

(continues on next page)

3.9. Configuration 55

Parsl Documentation, Release 1.1.0

(continued from previous page)

],
)

3.9.5 ASPIRE 1 (NSCC)

The following snippet shows an example configuration for accessing NSCC’s ASPIRE 1 supercomputer. This example
uses the HighThroughputExecutor executor and connects to ASPIRE1’s PBSPro scheduler. It also shows how
scheduler_options parameter could be used for scheduling array jobs in PBSPro.

from parsl.providers import PBSProProvider
from parsl.launchers import MpiRunLauncher
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_interface
from parsl.monitoring.monitoring import MonitoringHub

config = Config(
executors=[

HighThroughputExecutor(
label="htex",
heartbeat_period=15,
heartbeat_threshold=120,
worker_debug=True,
max_workers=4,
address=address_by_interface('ib0'),
provider=PBSProProvider(

launcher=MpiRunLauncher(),
PBS directives (header lines): for array jobs pass '-J' option
scheduler_options='#PBS -J 1-10',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
number of compute nodes allocated for each block
nodes_per_block=3,
min_blocks=3,
max_blocks=5,
cpus_per_node=24,
medium queue has a max walltime of 24 hrs
walltime='24:00:00'

),
),

],
monitoring=MonitoringHub(

hub_address=address_by_interface('ib0'),
hub_port=55055,
resource_monitoring_interval=10,

),
strategy='simple',
retries=3,
app_cache=True,
checkpoint_mode='task_exit'

)

56 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

3.9.6 Blue Waters (NCSA)

The following snippet shows an example configuration for executing remotely on Blue Waters, a flagship machine at
the National Center for Supercomputing Applications. The configuration assumes the user is running on a login node
and uses the TorqueProvider to interface with the scheduler, and uses the AprunLauncher to launch workers.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.launchers import AprunLauncher
from parsl.providers import TorqueProvider

config = Config(
executors=[

HighThroughputExecutor(
label="bw_htex",
cores_per_worker=1,
worker_debug=False,
provider=TorqueProvider(

queue='normal',
launcher=AprunLauncher(overrides="-b -- bwpy-environ --"),
scheduler_options='', # string to prepend to #SBATCH blocks in the

→˓submit script to the scheduler
worker_init='', # command to run before starting a worker, such as

→˓'source activate env'
init_blocks=1,
max_blocks=1,
min_blocks=1,
nodes_per_block=2,
walltime='00:10:00'

),
)

],

)

3.9.7 Bridges (PSC)

The following snippet shows an example configuration for executing on the Bridges supercomputer at the Pitts-

3.9. Configuration 57

Parsl Documentation, Release 1.1.0

burgh Supercomputing Center. The configuration assumes the user is running on a login node and uses the
SlurmProvider to interface with the scheduler, and uses the SrunLauncher to launch workers.

from parsl.config import Config
from parsl.providers import SlurmProvider
from parsl.launchers import SrunLauncher
from parsl.executors import HighThroughputExecutor

""" This config assumes that it is used to launch parsl tasks from the login nodes
of Bridges at PSC. Each job submitted to the scheduler will request 2 nodes for 10
→˓minutes.
"""

config = Config(
executors=[

HighThroughputExecutor(
label='Bridges_HTEX_multinode',
max_workers=1,
provider=SlurmProvider(

'YOUR_PARTITION_NAME', # Specify Partition / QOS, for eg. RM-small
nodes_per_block=2,
init_blocks=1,
string to prepend to #SBATCH blocks in the submit
script to the scheduler eg: '#SBATCH --gres=gpu:type:n'
scheduler_options='',

Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',

We request all hyperthreads on a node.
launcher=SrunLauncher(),
walltime='00:10:00',
Slurm scheduler on Cori can be slow at times,
increase the command timeouts
cmd_timeout=120,

),
)

]
)

58 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

3.9.8 CC-IN2P3

The snippet below shows an example configuration for executing from a login node on IN2P3’s Computing Centre.
The configuration uses the LocalProvider to run on a login node primarily to avoid GSISSH, which Parsl does
not support yet. This system uses Grid Engine which Parsl interfaces with using the GridEngineProvider.

from parsl.config import Config
from parsl.channels import LocalChannel
from parsl.providers import GridEngineProvider
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='cc_in2p3_htex',
max_workers=2,
provider=GridEngineProvider(

channel=LocalChannel(),
nodes_per_block=1,
init_blocks=2,
max_blocks=2,
walltime="00:20:00",
scheduler_options='', # Input your scheduler_options if needed
worker_init='', # Input your worker_init if needed

),
)

],
)

3.9. Configuration 59

Parsl Documentation, Release 1.1.0

3.9.9 CCL (Notre Dame, with Work Queue)

To utilize Work Queue with Parsl, please install the full CCTools software package within an appropriate Anaconda
or Miniconda environment (instructions for installing Miniconda can be found in the Conda install guide):

$ conda create -y --name <environment> python=<version> conda-pack
$ conda activate <environment>
$ conda install -y -c conda-forge ndcctools parsl

This creates a Conda environment on your machine with all the necessary tools and setup needed to utilize Work
Queue with the Parsl library.

The following snippet shows an example configuration for using the Work Queue distributed framework to run ap-
plications on remote machines at large. This examples uses the WorkQueueExecutor to schedule tasks locally,
and assumes that Work Queue workers have been externally connected to the master using the work_queue_factory or
condor_submit_workers command line utilities from CCTools. For more information on using Work Queue or to get
help with running applications using CCTools, visit the CCTools documentation online.

from parsl.config import Config
from parsl.executors import WorkQueueExecutor

config = Config(
executors=[

WorkQueueExecutor(
label="parsl_wq_example",
port=9123,
project_name="parsl_wq_example",
shared_fs=False

)
]

)

60 Chapter 3. User guide

https://docs.conda.io/projects/conda/en/latest/user-guide/install/
https://cctools.readthedocs.io/en/latest/man_pages/work_queue_factory/
https://cctools.readthedocs.io/en/latest/man_pages/condor_submit_workers/
https://cctools.readthedocs.io/en/latest/help/

Parsl Documentation, Release 1.1.0

3.9.10 Comet (SDSC)

The following snippet shows an example configuration for executing remotely on San Diego Supercomputer Center’s
Comet supercomputer. The example is designed to be executed on the login nodes, using the SlurmProvider to
interface with the Slurm scheduler used by Comet and the SrunLauncher to launch workers.

from parsl.config import Config
from parsl.launchers import SrunLauncher
from parsl.providers import SlurmProvider
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='Comet_HTEX_multinode',
worker_logdir_root='YOUR_LOGDIR_ON_COMET',
max_workers=2,
provider=SlurmProvider(

'debug',
launcher=SrunLauncher(),
string to prepend to #SBATCH blocks in the submit
script to the scheduler
scheduler_options='',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
walltime='00:10:00',
init_blocks=1,
max_blocks=1,
nodes_per_block=2,

),
)

]
)

3.9.11 Cooley (ALCF)

The following snippet shows an example configuration for executing on Argonne Leadership Computing Facility’s
Cooley analysis and visualization system. The example uses the HighThroughputExecutor and connects to
Cooley’s Cobalt scheduler using the CobaltProvider. This configuration assumes that the script is being executed
on the login nodes of Theta.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.launchers import MpiRunLauncher
from parsl.providers import CobaltProvider

(continues on next page)

3.9. Configuration 61

Parsl Documentation, Release 1.1.0

(continued from previous page)

config = Config(
executors=[

HighThroughputExecutor(
label="cooley_htex",
worker_debug=False,
cores_per_worker=1,
provider=CobaltProvider(

queue='debug',
account='YOUR_ACCOUNT', # project name to submit the job
launcher=MpiRunLauncher(),
scheduler_options='', # string to prepend to #COBALT blocks in the

→˓submit script to the scheduler
worker_init='', # command to run before starting a worker, such as

→˓'source activate env'
init_blocks=1,
max_blocks=1,
min_blocks=1,
nodes_per_block=4,
cmd_timeout=60,
walltime='00:10:00',

),
)

],

)

3.9.12 Cori (NERSC)

The following snippet shows an example configuration for accessing NERSC’s Cori supercomputer. This example
uses the HighThroughputExecutor and connects to Cori’s Slurm scheduler. It is configured to request 2 nodes
configured with 1 TaskBlock per node. Finally it includes override information to request a particular node type
(Haswell) and to configure a specific Python environment on the worker nodes using Anaconda.

from parsl.config import Config
from parsl.providers import SlurmProvider
from parsl.launchers import SrunLauncher
from parsl.executors import HighThroughputExecutor

(continues on next page)

62 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

(continued from previous page)

from parsl.addresses import address_by_interface

config = Config(
executors=[

HighThroughputExecutor(
label='Cori_HTEX_multinode',
This is the network interface on the login node to
which compute nodes can communicate
address=address_by_interface('bond0.144'),
cores_per_worker=2,
provider=SlurmProvider(

'regular', # Partition / QOS
nodes_per_block=2,
init_blocks=1,
string to prepend to #SBATCH blocks in the submit
script to the scheduler eg: '#SBATCH --constraint=knl,quad,cache'
scheduler_options='',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
We request all hyperthreads on a node.
launcher=SrunLauncher(overrides='-c 272'),
walltime='00:10:00',
Slurm scheduler on Cori can be slow at times,
increase the command timeouts
cmd_timeout=120,

),
)

]
)

3.9.13 Frontera (TACC)

Deployed in June 2019, Frontera is the 5th most powerful supercomputer in the world. Frontera replaces the NSF
Blue Waters system at NCSA and is the first deployment in the National Science Foundation’s petascale computing
program. The configuration below assumes that the user is running on a login node and uses the SlurmProvider
to interface with the scheduler, and uses the SrunLauncher to launch workers.

3.9. Configuration 63

Parsl Documentation, Release 1.1.0

from parsl.config import Config
from parsl.channels import LocalChannel
from parsl.providers import SlurmProvider
from parsl.executors import HighThroughputExecutor
from parsl.launchers import SrunLauncher

""" This config assumes that it is used to launch parsl tasks from the login nodes
of Frontera at TACC. Each job submitted to the scheduler will request 2 nodes for 10
→˓minutes.
"""
config = Config(

executors=[
HighThroughputExecutor(

label="frontera_htex",
max_workers=1, # Set number of workers per node
provider=SlurmProvider(

cmd_timeout=60, # Add extra time for slow scheduler responses
channel=LocalChannel(),
nodes_per_block=2,
init_blocks=1,
min_blocks=1,
max_blocks=1,
partition='normal', # Replace with

→˓partition name
scheduler_options='#SBATCH -A <YOUR_ALLOCATION>', # Enter scheduler_

→˓options if needed

Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',

Ideally we set the walltime to the longest supported walltime.
walltime='00:10:00',
launcher=SrunLauncher(),

),
)

],
)

3.9.14 Kubernetes Clusters

Kubernetes is an open-source system for container management, such as automating deployment and scaling of con-

64 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

tainers. The snippet below shows an example configuration for deploying pods as workers on a Kubernetes cluster.
The KubernetesProvider exploits the Python Kubernetes API, which assumes that you have kube config in ~/.kube/
config.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.providers import KubernetesProvider
from parsl.addresses import address_by_route

config = Config(
executors=[

HighThroughputExecutor(
label='kube-htex',
cores_per_worker=1,
max_workers=1,
worker_logdir_root='YOUR_WORK_DIR',

Address for the pod worker to connect back
address=address_by_route(),
provider=KubernetesProvider(

namespace="default",

Docker image url to use for pods
image='YOUR_DOCKER_URL',

Command to be run upon pod start, such as:
'module load Anaconda; source activate parsl_env'.
or 'pip install parsl'
worker_init='',

The secret key to download the image
secret="YOUR_KUBE_SECRET",

Should follow the Kubernetes naming rules
pod_name='YOUR-POD-Name',

nodes_per_block=1,
init_blocks=1,
Maximum number of pods to scale up
max_blocks=10,

),
),

]
)

3.9. Configuration 65

Parsl Documentation, Release 1.1.0

3.9.15 Midway (RCC, UChicago)

This Midway cluster is a campus cluster hosted by the Research Computing Center at the University of Chicago.
The snippet below shows an example configuration for executing remotely on Midway. The configuration assumes
the user is running on a login node and uses the SlurmProvider to interface with the scheduler, and uses the
SrunLauncher to launch workers.

from parsl.config import Config
from parsl.providers import SlurmProvider
from parsl.launchers import SrunLauncher
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='Midway_HTEX_multinode',
worker_debug=False,
max_workers=2,
provider=SlurmProvider(

'YOUR_PARTITION', # Partition name, e.g 'broadwl'
launcher=SrunLauncher(),
nodes_per_block=2,
init_blocks=1,
min_blocks=1,
max_blocks=1,
string to prepend to #SBATCH blocks in the submit
script to the scheduler eg: '#SBATCH --constraint=knl,quad,cache'
scheduler_options='',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
walltime='00:30:00'

),
)

],
)

66 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

3.9.16 Open Science Grid

The Open Science Grid (OSG) is a national, distributed computing Grid spanning over 100 individual sites to provide
tens of thousands of CPU cores. The snippet below shows an example configuration for executing remotely on OSG.
You will need to have a valid project name on the OSG. The configuration uses the CondorProvider to interface
with the scheduler.

from parsl.config import Config
from parsl.providers import CondorProvider
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='OSG_HTEX',
max_workers=1,
provider=CondorProvider(

nodes_per_block=1,
init_blocks=4,
max_blocks=4,
This scheduler option string ensures that the compute nodes

→˓provisioned
will have modules
scheduler_options="""
+ProjectName = "MyProject"
Requirements = HAS_MODULES=?=TRUE
""",
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.

(continues on next page)

3.9. Configuration 67

Parsl Documentation, Release 1.1.0

(continued from previous page)

worker_init='''unset HOME; unset PYTHONPATH; module load python/3.7.0;
python3 -m venv parsl_env; source parsl_env/bin/activate; python3 -m pip install parsl
→˓''',

walltime="00:20:00",
),
worker_logdir_root='$OSG_WN_TMP',
worker_ports=(31000, 31001)

)
]

)

3.9.17 Stampede2 (TACC)

The following snippet shows an example configuration for accessing TACC’s Stampede2 supercomputer. This exam-
ple uses theHighThroughput executor and connects to Stampede2’s Slurm scheduler.

from parsl.config import Config
from parsl.providers import SlurmProvider
from parsl.launchers import SrunLauncher
from parsl.executors import HighThroughputExecutor
from parsl.data_provider.globus import GlobusStaging

config = Config(
executors=[

HighThroughputExecutor(
label='Stampede2_HTEX',
max_workers=2,
provider=SlurmProvider(

nodes_per_block=2,
init_blocks=1,
min_blocks=1,
max_blocks=1,
partition='YOUR_PARTITION',
string to prepend to #SBATCH blocks in the submit
script to the scheduler eg: '#SBATCH --constraint=knl,quad,cache'

(continues on next page)

68 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

(continued from previous page)

scheduler_options='',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
launcher=SrunLauncher(),
walltime='00:30:00'

),
storage_access=[GlobusStaging(

endpoint_uuid='ceea5ca0-89a9-11e7-a97f-22000a92523b',
endpoint_path='/',
local_path='/'

)]
)

],
)

3.9.18 Summit (ORNL)

The following snippet shows an example configuration for executing from the login node on Summit, the leadership
class supercomputer hosted at the Oak Ridge National Laboratory. The example uses the LSFProvider to provision
compute nodes from the LSF cluster scheduler and the JsrunLauncher to launch workers across the compute
nodes.

from parsl.config import Config
from parsl.executors import HighThroughputExecutor

from parsl.launchers import JsrunLauncher
from parsl.providers import LSFProvider

from parsl.addresses import address_by_interface

config = Config(
executors=[

HighThroughputExecutor(
label='Summit_HTEX',
On Summit ensure that the working dir is writeable from the compute

→˓nodes,
for eg. paths below /gpfs/alpine/world-shared/
working_dir='YOUR_WORKING_DIR_ON_SHARED_FS',
address=address_by_interface('ib0'), # This assumes Parsl is running on

→˓login node
worker_port_range=(50000, 55000),
provider=LSFProvider(

launcher=JsrunLauncher(),
walltime="00:10:00",
nodes_per_block=2,
init_blocks=1,
max_blocks=1,
worker_init='', # Input your worker environment initialization

→˓commands
project='YOUR_PROJECT_ALLOCATION',
cmd_timeout=60

),
)

(continues on next page)

3.9. Configuration 69

Parsl Documentation, Release 1.1.0

(continued from previous page)

],
)

3.9.19 Theta (ALCF)

The following snippet shows an example configuration for executing on Argonne Leadership Computing Facility’s
Theta supercomputer. This example uses the HighThroughputExecutor and connects to Theta’s Cobalt sched-
uler using the CobaltProvider. This configuration assumes that the script is being executed on the login nodes of
Theta.

from parsl.config import Config
from parsl.providers import CobaltProvider
from parsl.launchers import AprunLauncher
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='theta_local_htex_multinode',
max_workers=4,
provider=CobaltProvider(

queue='YOUR_QUEUE',
account='YOUR_ACCOUNT',

(continues on next page)

70 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

(continued from previous page)

launcher=AprunLauncher(overrides="-d 64"),
walltime='00:30:00',
nodes_per_block=2,
init_blocks=1,
min_blocks=1,
max_blocks=1,
string to prepend to #COBALT blocks in the submit
script to the scheduler eg: '#COBALT -t 50'
scheduler_options='',
Command to be run before starting a worker, such as:
'module load Anaconda; source activate parsl_env'.
worker_init='',
cmd_timeout=120,

),
)

],
)

3.9.20 Further help

For help constructing a configuration, you can click on class names such as Config or
HighThroughputExecutor to see the associated class documentation. The same documentation can be
accessed interactively at the python command line via, for example:

>>> from parsl.config import Config
>>> help(Config)

3.10 Monitoring

Parsl includes a monitoring system to capture task state as well as resource usage over time. The Parsl monitoring
system aims to provide detailed information and diagnostic capabilities to help track the state of your programs, down
to the individual apps that are executed on remote machines.

The monitoring system records information to an SQLite database while a workflow runs. This information can then
be visualised in a web dashboard using the parsl-visualize tool, or queried using SQL using regular SQLite
tools.

3.10.1 Monitoring configuration

Parsl monitoring is only supported with the HighThroughputExecutor.

The following example shows how to enable monitoring in the Parsl configuration. Here the MonitoringHub is
specified to use port 55055 to receive monitoring messages from workers every 10 seconds.

import parsl
from parsl.monitoring.monitoring import MonitoringHub
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_hostname

import logging
(continues on next page)

3.10. Monitoring 71

Parsl Documentation, Release 1.1.0

(continued from previous page)

config = Config(
executors=[

HighThroughputExecutor(
label="local_htex",
cores_per_worker=1,
max_workers=4,
address=address_by_hostname(),

)
],
monitoring=MonitoringHub(

hub_address=address_by_hostname(),
hub_port=55055,
monitoring_debug=False,
resource_monitoring_interval=10,

),
strategy=None

)

3.10.2 Visualization

To run the web dashboard utility parsl-visualize you first need to install its dependencies:

$ pip install parsl[monitoring]

To view the web dashboard while or after a Parsl program has executed, run the parsl-visualize utility:

$ parsl-visualize

By default, this command expects that the default monitoring.db database is used in the current working directory.
Other databases can be loaded by passing the database URI on the command line. For example, if the full path to the
database is /tmp/my_monitoring.db, run:

$ parsl-visualize sqlite:////tmp/my_monitoring.db

By default, the visualization web server listens on 127.0.0.1:8080. If the web server is deployed on a machine
with a web browser, the dashboard can be accessed in the browser at 127.0.0.1:8080. If the web server is
deployed on a remote machine, such as the login node of a cluster, you will need to use an ssh tunnel from your local
machine to the cluster:

$ ssh -L 50000:127.0.0.1:8080 username@cluster_address

This command will bind your local machine’s port 50000 to the remote cluster’s port 8080. The dashboard can then
be accessed via the local machine’s browser at 127.0.0.1:50000.

Warning: Alternatively you can deploy the visualization server on a public interface. However, first check that
this is allowed by the cluster’s security policy. The following example shows how to deploy the web server on a
public port (i.e., open to Internet via public_IP:55555):

$ parsl-visualize --listen 0.0.0.0 --port 55555

72 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

Workflows Page

The workflows page lists all Parsl workflows that have been executed with monitoring enabled with the selected
database. It provides a high level summary of workflow state as shown below:

Throughout the dashboard, all blue elements are clickable. For example, clicking a specific worklow name from the
table takes you to the Workflow Summary page described in the next section.

Workflow Summary

The workflow summary page captures the run level details of a workflow, including start and end times as well as task
summary statistics. The workflow summary section is followed by the App Summary that lists the various apps and
invocation count for each.

3.10. Monitoring 73

Parsl Documentation, Release 1.1.0

The workflow summary also presents three different views of the workflow:

• Workflow DAG - with apps differentiated by colors: This visualization is useful to visually inspect the depen-
dency structure of the workflow. Hovering over the nodes in the DAG shows a tooltip for the app represented by
the node and it’s task ID.

• Workflow DAG - with task states differentiated by colors: This visualization is useful to identify what tasks have
been completed, failed, or are currently pending.

74 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

• Workflow resource usage: This visualization provides resource usage information at the workflow level. For
example, cumulative CPU/Memory utilization across workers over time.

3.10. Monitoring 75

Parsl Documentation, Release 1.1.0

76 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

3.11 Example parallel patterns

Parsl can be used to implement a wide range of parallel programming patterns, from bag of tasks through to nested
workflows. Parsl implicitly assembles a dataflow dependency graph based on the data shared between apps. The
flexibility of this model allows for the implementation of a wide range of parallel programming and workflow patterns.

Parsl is also designed to address broad execution requirements, from programs that run many short tasks to those that
run a few long tasks.

Below we illustrate a range of parallel programming and workflow patterns. It is important to note that this set of
examples is by no means comprehensive.

3.11.1 Bag of Tasks

Parsl can be used to execute a large bag of tasks. In this case, Parsl assembles the set of tasks (represented as Parsl
apps) and manages their concurrent execution on available resources.

from parsl import python_app

parsl.load()

Map function that returns double the input integer
@python_app
def app_random():

import random
return random.random()

results = []
for i in range(0, 10):

x = app_random()
mapped_results.append(x)

for r in results:
print(r.result())

3.11.2 Sequential workflows

Sequential workflows can be created by passing an AppFuture from one task to another. For example, in the following
program the generate app (a Python app) generates a random number that is consumed by the save app (a Bash
app), which writes it to a file. Because save cannot execute until it receives the message produced by generate,
the two apps execute in sequence.

from parsl import python_app

parsl.load()

Generate a random number
@python_app
def generate(limit):

from random import randint
"""Generate a random integer and return it"""
return randint(1,limit)

Write a message to a file

(continues on next page)

3.11. Example parallel patterns 77

Parsl Documentation, Release 1.1.0

(continued from previous page)

@bash_app
def save(message, outputs=[]):

return 'echo {} &> {}'.format(message, outputs[0])

message = generate(10)

saved = save(message, outputs=['output.txt'])

with open(saved.outputs[0].result(), 'r') as f:
print(f.read())

3.11.3 Parallel workflows

Parallel execution occurs automatically in Parsl, respecting dependencies among app executions. In the following
example, three instances of the wait_sleep_double app are created. The first two execute concurrently, as they
have no dependencies; the third must wait until the first two complete and thus the doubled_x and doubled_y
futures have values. Note that this sequencing occurs even though wait_sleep_double does not in fact use its
second and third arguments.

from parsl import python_app

parsl.load()

@python_app
def wait_sleep_double(x, foo_1, foo_2):

import time
time.sleep(2) # Sleep for 2 seconds
return x*2

Launch two apps, which will execute in parallel, since they do not have to
wait on any futures
doubled_x = wait_sleep_double(10, None, None)
doubled_y = wait_sleep_double(10, None, None)

The third app depends on the first two:
doubled_x doubled_y (2 s)
\ /
doublex_z (2 s)
doubled_z = wait_sleep_double(10, doubled_x, doubled_y)

doubled_z will be done in ~4s
print(doubled_z.result())

3.11.4 Parallel workflows with loops

A common approach to executing Parsl apps in parallel is via loops. The following example uses a loop to create many
random numbers in parallel.

from parsl import python_app

parsl.load()

@python_app
(continues on next page)

78 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

(continued from previous page)

def generate(limit):
from random import randint
"""Generate a random integer and return it"""
return randint(1, limit)

rand_nums = []
for i in range(1,5):

rand_nums.append(generate(i))

Wait for all apps to finish and collect the results
outputs = [r.result() for r in rand_nums]

In the preceding example, the execution of different tasks is coordinated by passing Python objects from producers to
consumers. In other cases, it can be convenient to pass data in files, as in the following reformulation. Here, a set of
files, each with a random number, is created by the generate app. These files are then concatenated into a single
file, which is subsequently used to compute the sum of all numbers.

from parsl import python_app, bash_app

parsl.load()

@bash_app
def generate(outputs=[]):

return 'echo $((RANDOM % (10 - 5 + 1) + 5)) &> {}'.format(outputs[0])

@bash_app
def concat(inputs=[], outputs=[], stdout='stdout.txt', stderr='stderr.txt'):

return 'cat {0} >> {1}'.format(' '.join(inputs), outputs[0])

@python_app
def total(inputs=[]):

total = 0
with open(inputs[0].filepath, 'r') as f:

for l in f:
total += int(l)

return total

Create 5 files with random numbers
output_files = []
for i in range (5):

output_files.append(generate(outputs=['random-%s.txt' % i]))

Concatenate the files into a single file
cc = concat(inputs=[i.outputs[0] for i in output_files], outputs=['all.txt'])

Calculate the average of the random numbers
totals = total(inputs=[cc.outputs[0]])

print(totals.result())

3.11. Example parallel patterns 79

Parsl Documentation, Release 1.1.0

3.11.5 MapReduce

MapReduce is a common pattern used in data analytics. It is composed of a map phase that filters values and a reduce
phase that aggregates values. The following example demonstrates how Parsl can be used to specify a MapReduce
computation in which the map phase doubles a set of input integers and the reduce phase computes the sum of those
results.

from parsl import python_app

parsl.load()

Map function that returns double the input integer
@python_app
def app_double(x):

return x*2

Reduce function that returns the sum of a list
@python_app
def app_sum(inputs=[]):

return sum(inputs)

Create a list of integers
items = range(0,4)

Map phase: apply the double *app* function to each item in list
mapped_results = []
for i in items:

x = app_double(i)
mapped_results.append(x)

Reduce phase: apply the sum *app* function to the set of results
total = app_sum(inputs=mapped_results)

print(total.result())

The program first defines two Parsl apps, app_double and app_sum. It then makes calls to the app_double app
with a set of input values. It then passes the results from app_double to the app_sum app to aggregate values into
a single result. These tasks execute concurrently, synchronized by the mapped_results variable. The following
figure shows the resulting task graph.

80 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

3.12 Structuring Parsl programs

Parsl programs can be developed in many ways. When developing a simple program it is often convenient to include
the app definitions and control logic in a single script. However, as a program inevitably grows and changes, like any
code, there are significant benefits to be obtained by modularizing the program, including:

1. Better readability

2. Logical separation of components (e.g., apps, config, and control logic)

3. Ease of reuse of components

The following example illustrates how a Parsl project can be organized into modules.

The configuration(s) can be defined in a module or file (e.g., config.py) which can be imported into the control
script depending on which execution resources should be used.

from parsl.config import Config
from parsl.channels import LocalChannel
from parsl.executors import HighThroughputExecutor
from parsl.providers import LocalProvider

htex_config = Config(
executors=[

HighThroughputExecutor(
label="htex_local",
cores_per_worker=1,
provider=LocalProvider(

channel=LocalChannel(),
),

)
],

)

3.12. Structuring Parsl programs 81

Parsl Documentation, Release 1.1.0

Parsl apps can be defined in separate file(s) or module(s) (e.g., library.py) grouped by functionality.

from parsl import python_app

@python_app
def increment(x):

return x + 1

Finally, the control logic for the Parsl program can then be implemented in a separate file (e.g., run_increment.
py). This file must the import the configuration from config.py before calling the increment app from
library.py:

import parsl
from config import htex_config
from library import increment

parsl.load(htex_config)

for i in range(5):
print('{} + 1 = {}'.format(i, increment(i).result()))

Which produces the following output:

0 + 1 = 1
1 + 1 = 2
2 + 1 = 3
3 + 1 = 4
4 + 1 = 5

3.13 Join Apps

Join apps allows an app to define a sub-workflow: the app can launch other apps and incorporate them into the main
task graph. They can be specified using the join_app decorator.

Join apps allow more naunced dependencies to be expressed that can help with:

• increased concurrency - helping with strong scaling

• more focused error propagation - allowing more of an ultimately failing workflow to complete

• more useful monitoring information

3.13.1 Usage

A join_app looks quite like a python_app, but should return a Future, rather than a value. After the python
code has run, the app invocation will not complete until that future has completed, and the return value of the
join_app will be the return value (or exception) from the returned future.

For example:

@python_app
def some_app():
return 3

@join_app
(continues on next page)

82 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

(continued from previous page)

def example():
x: Future = some_app()
return x # note that x is a Future, not a value

example.result() == 3

3.13.2 What/why/how can you do with a join app

join apps are useful when a workflow needs to launch some apps, but it doesn’t know what those apps are until some
earlier apps are completed.

For example, a pre-processing stage might be followed by n middle stages, but the value of n is not known until
pre-processing is complete; or the choice of app to run might depend on the output of pre-processing.

In the following example, a pre-processing stage is followed by a choice of option 1 or option 2 apps, with a post-
processing stage afterwards. All of the example apps are toy apps that are intended to demonstrate control/data flow
but they are based on a real use case.

Here is the implementation using join apps. Afterwards, there are some examples of the problems that arise trying to
implement this without join apps.

@python_app
def pre_process():
return 3

@python_app
def option_one(x):
do some stuff
return x*2

@python_app
def option_two(x):
do some more stuff
return (-x) * 2

@join_app
def process(x):
if x > 0:
return option_one(x)

else:
return option_two(x)

@python_app
def post_process(x):
return str(x) # convert x to a string

here is a simple workflow using these apps:
post_process(process(pre_process()))).result() == "6"
pre_process gives the number 3, process turns it into 6,
and post_process stringifys it to "6"

So why do we need process to be a @join_app for this to work?

• Why can’t process be a regular python function?

process needs to inspect the value of x to make a decision about what app to launch. So it needs to defer execution
until after the pre-processing stage has completed. In parsl, the way to defer that is using apps: the execution of

3.13. Join Apps 83

Parsl Documentation, Release 1.1.0

process will happen when the future returned by pre_process has completed.

• Why can’t process be a @python_app?

A python app, if run in a ThreadPoolExecutor, can launch more parsl apps; so a python app implementation of
process() would be able to inspect x and launch option_{one, two}.

From launching the option_{one, two} app, the app body python code would get a Future[int] - a Future
that will eventually contain int.

But now, we want to (at submission time) invoke post_process, and have it wait until the relevant option_{one,
two} app has completed.

If we don’t have join apps, how can we do this?

We could make process wait for option_{one, two} to complete, before returning, like this:

@python_app
def process(x):
if x > 0:
f = option_one(x)

else:
f = option_two(x)

return f.result()

but this will block the worker running process until option_{one, two} has completed. If there aren’t enough
workers to run option_{one, two} this can even deadlock. (principle: apps should not wait on completion of
other apps and should always allow parsl to handle this through dependencies)

We could make process return the Future to the main workflow thread:

@python_app
def process(x):
if x > 0:
f = option_one(x)

else:
f = option_two(x)

return f # f is a Future[int]

process(3) is a Future[Future[int]]

What comes out of invoking process(x) now is a nested Future[Future[int]] - it’s a promise that eventu-
ally process will give you a promise (from option_one, two}) that will eventually give you an int.

We can’t pass that future into post_process. . . because post_process wants the final int, and that future will complete
before the int is ready, and that (outer) future will have as its value the inner future (which won’t be complete yet).

So we could wait for the result in the main workflow thread:

f_outer = process(pre_process()) # Future[Future[int]]
f_inner = f_outer.result # Future[int]
result = post_process(f_inner)
result == "6"

But this now blocks the main workflow thread. If we really only need to run these three lines, that’s fine, but what
about if we are in a for loop that sets up 1000 parametrised iterations:

for x in [1..1000]:
f_outer = process(pre_process(x)) # Future[Future[int]]
f_inner = f_outer.result() # Future[int]
result = post_process(f_inner)

84 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

The for loop can only iterate after pre_processing is done for each iteration - it is unnecessarily serialised by the
.result() call, so that pre_processing cannot run in parallel.

So, the rule about not calling .result() applies in the main workflow thread too.

What join apps add is the ability for parsl to unwrap that Future[Future[int]] into a Future[int] in a “sensible” way (eg
it doesn’t need to block a worker).

3.13.3 Terminology

The term “join” comes from use of monads in functional programming, especially Haskell.

3.14 Performance and Scalability

Parsl is designed to scale from small to large systems .

3.14.1 Scalability

We studied strong and weak scaling on the Blue Waters supercomputer. In strong scaling, the total problem size is
fixed; in weak scaling, the problem size per CPU core is fixed. In both cases, we measure completion time as a function
of number of CPU cores. An ideal framework should scale linearly, which for strong scaling means that speedup scales
with the number of cores, and for weak scaling means that completion time remains constant as the number of cores
increases.

To measure the strong and weak scaling of Parsl executors, we created Parsl programs to run tasks with different
durations, ranging from a “no-op”–a Python function that exits immediately—to tasks that sleep for 10, 100, and
1,000 ms. For each executor we deployed a worker per core on each node.

While we compare here with IPP, Fireworks, and Dask Distributed, we note that these systems are not necessarily
designed for Parsl-like workloads or scale.

Further results are presented in our HPDC paper.

Strong scaling

The figures below show the strong scaling results for 5,000 1-second sleep tasks. HTEX provides good performance
in all cases, slightly exceeding what is possible with EXEX, while EXEX scales to significantly more workers than
the other executors and frameworks. Both HTEX and EXEX remain nearly constant, indicating that they likely will
continue to perform well at larger scales.

3.14. Performance and Scalability 85

https://parsl-project.org/publications/babuji19parsl.pdf

Parsl Documentation, Release 1.1.0

Weak scaling

Here, we launched 10 tasks per worker, while increasing the number of workers. (We limited experiments to 10 tasks
per worker, as on 3,125 nodes, that represents 3,125 nodes × 32 workers/node × 10 tasks/worker, or 1M tasks.) The
figure below shows our results. We observe that HTEX and EXEX outperform other executors and frameworks with
more than 4,096 workers (128 nodes). All frameworks exhibit similar trends, with completion time remaining close to
constant initially and increasing rapidly as the number of workers increases.

86 Chapter 3. User guide

Parsl Documentation, Release 1.1.0

3.14.2 Throughput

We measured the maximum throughput of all the Parsl executors, on the UChicago Research Computing Center’s
Midway Cluster. To do so, we ran 50,000 “no-op” tasks on a varying number of workers and recorded the completion
times. The throughout is computed as the number of tasks divided by the completion time. HTEX, and EXEX achieved
maximum throughputs of 1,181 and 1,176 tasks/s, respectively.

3.14.3 Summary

The table below summarizes the scale at which we have tested Parsl executors. The maximum number of nodes
and workers for HTEX and EXEX is limited by the size of allocation available during testing on Blue Waters. The
throughput results are collected on Midway.

Executor Max # workers Max # nodes Max tasks/second
IPP 2,048 64 330
HTEX 65,536 2,048 1,181
EXEX 262,144 8,192 1,176

3.15 Usage statistics collection

Parsl uses an Opt-in model to send anonymized usage statistics back to the Parsl development team to measure
worldwide usage and improve reliability and usability. The usage statistics are used only for improvements and
reporting. They are not shared in raw form outside of the Parsl team.

3.15.1 Why are we doing this?

The Parsl development team receives support from government funding agencies. For the team to continue to receive
such funding, and for the agencies themselves to argue for funding, both the team and the agencies must be able to
demonstrate that the scientific community is benefiting from these investments. To this end, it is important that we
provide aggregate usage data about such things as the following:

• How many people use Parsl

• Average job length

• Parsl exit codes

By participating in this project, you help justify continuing support for the software on which you rely. The data sent
is as generic as possible and is anonymized (see What is sent? below).

3.15.2 Opt-In

We have chosen opt-in collection rather than opt-out with the hope that developers and researchers will choose to send
us this information. The reason is that we need this data - it is a requirement for funding.

By opting-in, and allowing these statistics to be reported back, you are explicitly supporting the further development
of Parsl.

If you wish to opt in to usage reporting, set PARSL_TRACKING=true in your environment or set
usage_tracking=True in the configuration object (parsl.config.Config).

3.15. Usage statistics collection 87

Parsl Documentation, Release 1.1.0

3.15.3 What is sent?

• Anonymized user ID

• Anonymized hostname

• Anonymized Parsl script ID

• Start and end times

• Parsl exit code

• Number of executors used

• Number of failures

• Parsl and Python version

• OS and OS version

3.15.4 How is the data sent?

The data is sent via UDP. While this may cause us to lose some data, it drastically reduces the possibility that the usage
statistics reporting will adversely affect the operation of the software.

3.15.5 When is the data sent?

The data is sent twice per run, once when Parsl starts a script, and once when the script is completed.

3.15.6 What will the data be used for?

The data will be used for reporting purposes to answer questions such as:

• How many unique users are using Parsl?

• To determine patterns of usage - is activity increasing or decreasing?

We will also use this information to improve Parsl by identifying software faults.

• What percentage of tasks complete successfully?

• Of the tasks that fail, what is the most common fault code returned?

3.15.7 Feedback

Please send us your feedback at parsl@googlegroups.com. Feedback from our user communities will be useful in
determining our path forward with usage tracking in the future.

88 Chapter 3. User guide

mailto:parsl@googlegroups.com

CHAPTER

FOUR

FAQ

4.1 How can I debug a Parsl script?

Parsl interfaces with the Python logger. To enable logging of Parsl’s progress to stdout, turn on the logger as follows.
Alternatively, you can configure the file logger to write to an output file.

import parsl

Emit log lines to the screen
parsl.set_stream_logger()

Write log to file, specify level of detail for logs
parsl.set_file_logger(FILENAME, level=logging.DEBUG)

Note: Parsl’s logging will not capture STDOUT/STDERR from the apps themselves. Follow instructions below for
application logs.

4.2 How can I view outputs and errors from apps?

Parsl apps include keyword arguments for capturing stderr and stdout in files.

@bash_app
def hello(msg, stdout=None):

return 'echo {}'.format(msg)

When hello() runs the STDOUT will be written to 'hello.txt'
hello('Hello world', stdout='hello.txt')

4.3 How can I make an App dependent on multiple inputs?

You can pass any number of futures in to a single App either as positional arguments or as a list of futures via the
special keyword inputs=[]. The App will wait for all inputs to be satisfied before execution.

89

Parsl Documentation, Release 1.1.0

4.4 Can I pass any Python object between apps?

No. Unfortunately, only picklable objects can be passed between apps. For objects that can’t be pickled, it is recom-
mended to use object specific methods to write the object into a file and use files to communicate between apps.

4.5 How do I specify where apps should be run?

Parsl’s multi-executor support allows you to define the executor (including local threads) on which an App should be
executed. For example:

@python_app(executors=['SuperComputer1'])
def BigSimulation(...):

...

@python_app(executors=['GPUMachine'])
def Visualize (...)

...

4.6 Workers do not connect back to Parsl

If you are running via ssh to a remote system from your local machine, or from the login node of a clus-
ter/supercomputer, it is necessary to have a public IP to which the workers can connect back. While our remote
execution systems can identify the IP address automatically in certain cases, it is safer to specify the address explicitly.
Parsl provides a few heuristic based address resolution methods that could be useful, however with complex networks
some trial and error might be necessary to find the right address or network interface to use.

For HighThroughputExecutor the address is specified in the Config as shown below :

THIS IS A CONFIG FRAGMENT FOR ILLUSTRATION
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_route, address_by_query, address_by_hostname
config = Config(

executors=[
HighThroughputExecutor(

label='ALCF_theta_local',
address='<AA.BB.CC.DD>' # specify public ip here
address=address_by_route() # Alternatively you can try this
address=address_by_query() # Alternatively you can try this
address=address_by_hostname() # Alternatively you can try this

)
],

)

Note: Another possibility that can cause workers not to connect back to Parsl is an incompatibility between the
system and the pre-compiled bindings used for pyzmq. As a last resort, you can try: pip install --upgrade
--no-binary pyzmq pyzmq, which forces re-compilation.

For the HighThroughputExecutor as well as the ExtremeScaleExecutor, address is a keyword argu-
ment taken at initialization. Here is an example for the HighThroughputExecutor:

90 Chapter 4. FAQ

https://docs.python.org/3/library/pickle.html#what-can-be-pickled-and-unpickled

Parsl Documentation, Release 1.1.0

THIS IS A CONFIG FRAGMENT FOR ILLUSTRATION
from parsl.config import Config
from parsl.executors import HighThroughputExecutor
from parsl.addresses import address_by_route, address_by_query, address_by_hostname

config = Config(
executors=[

HighThroughputExecutor(
label='NERSC_Cori',
address='<AA.BB.CC.DD>' # specify public ip here
address=address_by_route() # Alternatively you can try this
address=address_by_query() # Alternatively you can try this
address=address_by_hostname() # Alternatively you can try this

)
],

)

Note: On certain systems such as the Midway RCC cluster at UChicago, some network interfaces have an active
intrusion detection system that drops connections that persist beyond a specific duration (~20s). If you get repeated
ManagerLost exceptions, it would warrant taking a closer look at networking.

4.7 parsl.dataflow.error.ConfigurationError

The Parsl configuration model underwent a major and non-backward compatible change in the transition to v0.6.0.
Prior to v0.6.0 the configuration object was a python dictionary with nested dictionaries and lists. The switch to a
class based configuration allowed for well-defined options for each specific component being configured as well as
transparency on configuration defaults. The following traceback indicates that the old style configuration was passed
to Parsl v0.6.0+ and requires an upgrade to the configuration.

File "/home/yadu/src/parsl/parsl/dataflow/dflow.py", line 70, in __init__
'Expected `Config` class, received dictionary. For help, '

parsl.dataflow.error.ConfigurationError: Expected `Config` class, received dictionary.
→˓ For help,
see http://parsl.readthedocs.io/en/stable/stubs/parsl.config.Config.html

For more information on how to update your configuration script, please refer to: Configuration.

4.8 Remote execution fails with SystemError(unknown opcode)

When running with Ipyparallel workers, it is important to ensure that the Python version on the client side matches
that on the side of the workers. If there’s a mismatch, the apps sent to the workers will fail with the following error:
ipyparallel.error.RemoteError: SystemError(unknown opcode)

Caution: It is required that both the parsl script and all workers are set to use python with the same Major.Minor
version numbers. For example, use Python3.5.X on both local and worker side.

4.7. parsl.dataflow.error.ConfigurationError 91

Parsl Documentation, Release 1.1.0

4.9 Parsl complains about missing packages

If parsl is cloned from a Github repository and added to the PYTHONPATH, it is possible to miss the installation of
some dependent libraries. In this configuration, parsl will raise errors such as:

ModuleNotFoundError: No module named 'ipyparallel'

In this situation, please install the required packages. If you are on a machine with sudo privileges you could install the
packages for all users, or if you choose, install to a virtual environment using packages such as virtualenv and conda.

For instance, with conda, follow this cheatsheet to create a virtual environment:

Activate an environmentconda install
source activate <my_env>

Install packages:
conda install <ipyparallel, dill, boto3...>

4.10 zmq.error.ZMQError: Invalid argument

If you are making the transition from Parsl v0.3.0 to v0.4.0 and you run into this error, please check your config
structure. In v0.3.0, config['controller']['publicIp'] = '*' was commonly used to specify that the
IP address should be autodetected. This has changed in v0.4.0 and setting 'publicIp' = '*' results in an error
with a traceback that looks like this:

File "/usr/local/lib/python3.5/dist-packages/ipyparallel/client/client.py", line 483,
→˓in __init__
self._query_socket.connect(cfg['registration'])
File "zmq/backend/cython/socket.pyx", line 528, in zmq.backend.cython.socket.Socket.
→˓connect (zmq/backend/cython/socket.c:5971)
File "zmq/backend/cython/checkrc.pxd", line 25, in zmq.backend.cython.checkrc._check_
→˓rc (zmq/backend/cython/socket.c:10014)
zmq.error.ZMQError: Invalid argument

In v0.4.0, the controller block defaults to detecting the IP address automatically, and if that does not work for you, you
can specify the IP address explicitly like this: config['controller']['publicIp'] = 'IP.ADD.RES.
S'

4.11 How do I run code that uses Python2.X?

Modules or code that require Python2.X cannot be run as python apps, however they may be run via bash
apps. The primary limitation with python apps is that all the inputs and outputs including the function
would be mangled when being transmitted between python interpreters with different version numbers (also see
parsl.dataflow.error.ConfigurationError)

Here is an example of running a python2.7 code as a bash application:

@bash_app
def python_27_app (arg1, arg2 ...):

return '''conda activate py2.7_env # Use conda to ensure right env
python2.7 my_python_app.py -arg {0} -d {1}
'''.format(arg1, arg2)

92 Chapter 4. FAQ

https://conda.io/docs/_downloads/conda-cheatsheet.pdf

Parsl Documentation, Release 1.1.0

4.12 Parsl hangs

There are a few common situations in which a Parsl script might hang:

1. Circular Dependency in code: If an app takes a list as an input argument and the future returned is added to
that list, it creates a circular dependency that cannot be resolved. This situation is described in issue 59 in more
detail.

2. Workers requested are unable to contact the Parsl client due to one or more issues listed below:

• Parsl client does not have a public IP (e.g. laptop on wifi). If your network does not provide public IPs, the
simple solution is to ssh over to a machine that is public facing. Machines provisioned from cloud-vendors
setup with public IPs are another option.

• Parsl hasn’t autodetected the public IP. See Workers do not connect back to Parsl for more details.

• Firewall restrictions that block certain port ranges. If there is a certain port range that is not blocked, you
may specify that via configuration:

from libsubmit.providers import Cobalt
from parsl.config import Config
from parsl.executors import HighThroughputExecutor

config = Config(
executors=[

HighThroughputExecutor(
label='ALCF_theta_local',
provider=Cobalt(),
worer_port_range=('50000,55000'),
interchange_port_range=('50000,55000')

)
],

)

4.13 How can I start a Jupyter notebook over SSH?

Run

jupyter notebook --no-browser --ip=`/sbin/ip route get 8.8.8.8 | awk '{print $NF;exit}
→˓'`

for a Jupyter notebook, or

jupyter lab --no-browser --ip=`/sbin/ip route get 8.8.8.8 | awk '{print $NF;exit}'`

for Jupyter lab (recommended). If that doesn’t work, see these instructions.

4.12. Parsl hangs 93

https://github.com/Parsl/parsl/issues/59
https://techtalktone.wordpress.com/2017/03/28/running-jupyter-notebooks-on-a-remote-server-via-ssh/

Parsl Documentation, Release 1.1.0

4.14 How can I sync my conda environment and Jupyter environ-
ment?

Run:

conda install nb_conda

Now all available conda environments (for example, one created by following the instructions in the quickstart guide)
will automatically be added to the list of kernels.

4.15 Addressing SerializationError

As of v1.0.0, Parsl will raise a SerializationError when it encounters an object that Parsl cannot serialize.
This applies to objects passed as arguments to an app, as well as objects returned from the app.

Parsl uses cloudpickle and pickle to serialize Python objects to/from functions. Therefore, Python apps can only use
input and output objects that can be serialized by cloudpickle or pickle. For example the following data types are
known to have issues with serializability :

• Closures

• Objects of complex classes with no __dict__ or __getstate__ methods defined

• System objects such as file descriptors, sockets and locks (e.g threading.Lock)

If Parsl raises a SerializationError, first identify what objects are problematic with a quick test:

import pickle
If non-serializable you will get a TypeError
pickle.dumps(YOUR_DATA_OBJECT)

If the data object simply is complex, please refer here for more details on adding custom mechanisms for supporting
serialization.

4.16 How do I cite Parsl?

To cite Parsl in publications, please use the following:

Babuji, Y., Woodard, A., Li, Z., Katz, D. S., Clifford, B., Kumar, R., Lacinski, L., Chard, R., Wozniak, J., Foster, I.,
Wilde, M., and Chard, K., Parsl: Pervasive Parallel Programming in Python. 28th ACM International Symposium on
High-Performance Parallel and Distributed Computing (HPDC). 2019. https://doi.org/10.1145/3307681.3325400

or

@inproceedings{babuji19parsl,
author = {Babuji, Yadu and

Woodard, Anna and
Li, Zhuozhao and
Katz, Daniel S. and
Clifford, Ben and
Kumar, Rohan and
Lacinski, Lukasz and
Chard, Ryan and
Wozniak, Justin and

(continues on next page)

94 Chapter 4. FAQ

https://github.com/cloudpipe/cloudpickle
https://docs.python.org/3/library/pickle.html#handling-stateful-objects
https://doi.org/10.1145/3307681.3325400

Parsl Documentation, Release 1.1.0

(continued from previous page)

Foster, Ian and
Wilde, Mike and
Chard, Kyle},

title = {Parsl: Pervasive Parallel Programming in Python},
booktitle = {28th ACM International Symposium on High-Performance Parallel and

→˓Distributed Computing (HPDC)},
doi = {10.1145/3307681.3325400},
year = {2019},
url = {https://doi.org/10.1145/3307681.3325400}

}

4.16. How do I cite Parsl? 95

Parsl Documentation, Release 1.1.0

96 Chapter 4. FAQ

CHAPTER

FIVE

API REFERENCE GUIDE

5.1 Core

parsl.app.app.python_app Decorator function for making python apps.
parsl.app.app.bash_app Decorator function for making bash apps.
parsl.app.app.join_app
parsl.dataflow.futures.AppFuture An AppFuture wraps a sequence of Futures which may

fail and be retried.
parsl.dataflow.dflow.
DataFlowKernelLoader

Manage which DataFlowKernel is active.

parsl.monitoring.MonitoringHub

5.1.1 parsl.app.app.python_app

parsl.app.app.python_app(function=None, data_flow_kernel: Op-
tional[parsl.dataflow.dflow.DataFlowKernel] = None, cache: bool =
False, executors: Union[List[str], typing_extensions.Literal[all]] = 'all',
ignore_for_cache: Optional[List[str]] = None, join: bool = False)

Decorator function for making python apps.

Parameters

• function (function) – Do not pass this keyword argument directly. This is needed
in order to allow for omitted parenthesis, for example, @python_app if using all defaults
or @python_app(walltime=120). If the decorator is used alone, function will be
the actual function being decorated, whereas if it is called with arguments, function will be
None. Default is None.

• data_flow_kernel (DataFlowKernel) – The DataFlowKernel responsible for
managing this app. This can be omitted only after calling parsl.dataflow.dflow.
DataFlowKernelLoader.load(). Default is None.

• executors (string or list) – Labels of the executors that this app can execute
over. Default is ‘all’.

• cache (bool) – Enable caching of the app call. Default is False.

• join (bool) – If True, this app will be a join app: the decorated python code must return
a Future (rather than a regular value), and and the corresponding AppFuture will complete
when that inner future completes.

97

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.1.0

5.1.2 parsl.app.app.bash_app

parsl.app.app.bash_app(function=None, data_flow_kernel: Op-
tional[parsl.dataflow.dflow.DataFlowKernel] = None, cache: bool =
False, executors: Union[List[str], typing_extensions.Literal[all]] = 'all',
ignore_for_cache: Optional[List[str]] = None)

Decorator function for making bash apps.

Parameters

• function (function) – Do not pass this keyword argument directly. This is needed
in order to allow for omitted parenthesis, for example, @bash_app if using all defaults
or @bash_app(walltime=120). If the decorator is used alone, function will be the
actual function being decorated, whereas if it is called with arguments, function will be
None. Default is None.

• data_flow_kernel (DataFlowKernel) – The DataFlowKernel responsible for
managing this app. This can be omitted only after calling parsl.dataflow.dflow.
DataFlowKernelLoader.load(). Default is None.

• walltime (int) – Walltime for app in seconds. Default is 60.

• executors (string or list) – Labels of the executors that this app can execute
over. Default is ‘all’.

• cache (bool) – Enable caching of the app call. Default is False.

5.1.3 parsl.app.app.join_app

parsl.app.app.join_app(function=None, data_flow_kernel: Op-
tional[parsl.dataflow.dflow.DataFlowKernel] = None, cache: bool =
False, ignore_for_cache: Optional[List[str]] = None)

5.1.4 parsl.dataflow.futures.AppFuture

class parsl.dataflow.futures.AppFuture(task_def)
An AppFuture wraps a sequence of Futures which may fail and be retried.

The AppFuture will wait for the DFK to provide a result from an appropriate parent future, through
parent_callback. It will set its result to the result of that parent future, if that parent future completes
without an exception. This result setting should cause .result(), .exception() and done callbacks to fire as ex-
pected.

The AppFuture will not set its result to the result of the parent future, if that parent future completes with an
exception, and if that parent future has retries left. In that case, no result(), exception() or done callbacks should
report a result.

The AppFuture will set its result to the result of the parent future, if that parent future completes with an
exception and if that parent future has no retries left, or if it has no retry field. .result(), .exception() and done
callbacks should give a result as expected when a Future has a result set

The parent future may return a RemoteExceptionWrapper as a result and AppFuture will treat this an an excep-
tion for the above retry and result handling behaviour.

__init__(task_def)
Initialize the AppFuture.

Args:

98 Chapter 5. API Reference guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

KWargs:

• task_def [The DFK task definition dictionary for the task represented] by this future.

Methods

__init__(task_def) Initialize the AppFuture.
add_done_callback(fn) Attaches a callable that will be called when the future

finishes.
cancel() Cancel the future if possible.
cancelled() Return True if the future was cancelled.
done() Return True of the future was cancelled or finished

executing.
exception([timeout]) Return the exception raised by the call that the future

represents.
result([timeout]) Return the result of the call that the future represents.
running() Return True if the future is currently executing.
set_exception(exception) Sets the result of the future as being the given excep-

tion.
set_result(result) Sets the return value of work associated with the fu-

ture.
set_running_or_notify_cancel() Mark the future as running or process any cancel no-

tifications.
task_status() Returns the status of the task that will provide the

value for this future.

Attributes

outputs
stderr
stdout
tid

5.1.5 parsl.dataflow.dflow.DataFlowKernelLoader

class parsl.dataflow.dflow.DataFlowKernelLoader
Manage which DataFlowKernel is active.

This is a singleton class containing only class methods. You should not need to instantiate this class.

__init__()
Initialize self. See help(type(self)) for accurate signature.

5.1. Core 99

Parsl Documentation, Release 1.1.0

Methods

__init__() Initialize self.
clear() Clear the active DataFlowKernel so that a new one

can be loaded.
dfk() Return the currently-loaded DataFlowKernel.
load([config]) Load a DataFlowKernel.
wait_for_current_tasks() Waits for all tasks in the task list to be completed, by

waiting for their AppFuture to be completed.

5.1.6 parsl.monitoring.MonitoringHub

class parsl.monitoring.MonitoringHub(hub_address: str, hub_port: Optional[int] = None,
hub_port_range: Tuple[int, int] = (55050, 56000),
client_address: str = '127.0.0.1', client_port_range:
Tuple[int, int] = (55000, 56000), workflow_name: Op-
tional[str] = None, workflow_version: Optional[str] =
None, logging_endpoint: str = 'sqlite:///monitoring.db',
logdir: Optional[str] = None, monitoring_debug: bool
= False, resource_monitoring_enabled: bool = True,
resource_monitoring_interval: float = 30)

__init__(hub_address: str, hub_port: Optional[int] = None, hub_port_range: Tuple[int, int]
= (55050, 56000), client_address: str = '127.0.0.1', client_port_range: Tuple[int, int]
= (55000, 56000), workflow_name: Optional[str] = None, workflow_version: Op-
tional[str] = None, logging_endpoint: str = 'sqlite:///monitoring.db', logdir: Optional[str]
= None, monitoring_debug: bool = False, resource_monitoring_enabled: bool = True, re-
source_monitoring_interval: float = 30)

Parameters

• hub_address (str) – The ip address at which the workers will be able to reach the
Hub.

• hub_port (int) – The specific port at which workers will be able to reach the Hub via
UDP. Default: None

• hub_port_range (tuple(int, int)) – The MonitoringHub picks ports at random
from the range which will be used by Hub. This is overridden when the hub_port option
is set. Default: (55050, 56000)

• client_address (str) – The ip address at which the dfk will be able to reach Hub.
Default: “127.0.0.1”

• client_port_range (tuple(int, int)) – The MonitoringHub picks ports at
random from the range which will be used by Hub. Default: (55000, 56000)

• workflow_name (str) – The name for the workflow. Default to the name of the parsl
script

• workflow_version (str) – The version of the workflow. Default to the beginning
datetime of the parsl script

• logging_endpoint (str) – The database connection url for monitoring to log the
information. These URLs follow RFC-1738, and can include username, password, host-
name, database name. Default: ‘sqlite:///monitoring.db’

100 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

• logdir (str) – Parsl log directory paths. Logs and temp files go here. Default: ‘.’

• monitoring_debug (Bool) – Enable monitoring debug logging. Default: False

• resource_monitoring_enabled (boolean) – Set this field to True to enable log-
ging the info of resource usage of each task. Default: True

• resource_monitoring_interval (float) – The time interval, in seconds, at
which the monitoring records the resource usage of each task. Default: 30 seconds

Methods

__init__(hub_address[, hub_port, . . .])
param hub_address The ip address at

which the workers will be able to
reach the Hub.

close()
monitor_wrapper(f, try_id, task_id, . . .) Internal Wrap the Parsl app with a function that will

call the monitor function and point it at the correct
pid when the task begins.

send(mtype, message)
start(run_id)

5.2 Configuration

parsl.config.Config Specification of Parsl configuration options.
parsl.set_stream_logger Add a stream log handler.
parsl.set_file_logger Add a stream log handler.
parsl.addresses.address_by_hostname Returns the hostname of the local host.
parsl.addresses.address_by_interface Returns the IP address of the given interface name, e.g.
parsl.addresses.address_by_query Finds an address for the local host by querying ipify.
parsl.addresses.address_by_route Finds an address for the local host by querying the local

routing table for the route to Google DNS.
parsl.utils.get_all_checkpoints Finds the checkpoints from all runs in the rundir.
parsl.utils.get_last_checkpoint Finds the checkpoint from the last run, if one exists.

5.2.1 parsl.config.Config

class parsl.config.Config(executors: Optional[List[parsl.executors.base.ParslExecutor]] = None,
app_cache: bool = True, checkpoint_files: Optional[List[str]] =
None, checkpoint_mode: Optional[str] = None, checkpoint_period:
Optional[str] = None, garbage_collect: bool = True, inter-
nal_tasks_max_threads: int = 10, retries: int = 0, run_dir: str = 'run-
info', strategy: Optional[str] = 'simple', max_idletime: float = 120.0,
monitoring: Optional[parsl.monitoring.monitoring.MonitoringHub] =
None, usage_tracking: bool = False, initialize_logging: bool = True)

Specification of Parsl configuration options.

Parameters

5.2. Configuration 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.1.0

• executors (list of ParslExecutor, optional) – List of ParslExecutor
instances to use for executing tasks. Default is [ThreadPoolExecutor()].

• app_cache (bool, optional) – Enable app caching. Default is True.

• checkpoint_files (list of str, optional) – List of paths to check-
point files. See parsl.utils.get_all_checkpoints() and parsl.utils.
get_last_checkpoint() for helpers. Default is None.

• checkpoint_mode (str, optional) – Checkpoint mode to use, can be
'dfk_exit', 'task_exit', or 'periodic'. If set to None, checkpointing will
be disabled. Default is None.

• checkpoint_period (str, optional) – Time interval (in “HH:MM:SS”) at which
to checkpoint completed tasks. Only has an effect if checkpoint_mode='periodic'.

• garbage_collect (bool. optional.) – Delete task records from DFK when tasks
have completed. Default: True

• internal_tasks_max_threads (int, optional) – Maximum number of
threads to allocate for submit side internal tasks such as some data transfers or @joinapps
Default is 10.

• monitoring (MonitoringHub, optional) – The config to use for database moni-
toring. Default is None which does not log to a database.

• retries (int, optional) – Set the number of retries in case of failure. Default is 0.

• run_dir (str, optional) – Path to run directory. Default is ‘runinfo’.

• strategy (str, optional) – Strategy to use for scaling resources according to work-
flow needs. Can be ‘simple’ or None. If None, dynamic scaling will be disabled. Default
is ‘simple’.

• max_idletime (float, optional) – The maximum idle time allowed for an execu-
tor before strategy could shut down unused resources (scheduler jobs). Default is 120.0
seconds.

• usage_tracking (bool, optional) – Set this field to True to opt-in to Parsl’s usage
tracking system. Parsl only collects minimal, non personally-identifiable, information used
for reporting to our funding agencies. Default is False.

• initialize_logging (bool, optional) – Make DFK optionally not initialize any
logging. Log messages will still be passed into the python logging system under the parsl
logger name, but the logging system will not by default perform any further log system
configuration. Most noticeably, it will not create a parsl.log logfile. The use case for this is
when parsl is used as a library in a bigger system which wants to configure logging in a way
that makes sense for that bigger system as a whole.

__init__(executors: Optional[List[parsl.executors.base.ParslExecutor]] = None, app_cache: bool
= True, checkpoint_files: Optional[List[str]] = None, checkpoint_mode: Optional[str]
= None, checkpoint_period: Optional[str] = None, garbage_collect: bool = True,
internal_tasks_max_threads: int = 10, retries: int = 0, run_dir: str = 'runinfo',
strategy: Optional[str] = 'simple', max_idletime: float = 120.0, monitoring: Op-
tional[parsl.monitoring.monitoring.MonitoringHub] = None, usage_tracking: bool = False,
initialize_logging: bool = True)

Initialize self. See help(type(self)) for accurate signature.

102 Chapter 5. API Reference guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.1.0

Methods

__init__([executors, app_cache, . . .]) Initialize self.

Attributes

executors

5.2.2 parsl.set_stream_logger

parsl.set_stream_logger(name: str = 'parsl', level: int = 10, format_string: Optional[str] = None)
Add a stream log handler.

Parameters

• name (-) – Set the logger name.

• level (-) – Set to logging.DEBUG by default.

• format_string (-) – Set to None by default.

Returns

• None

5.2.3 parsl.set_file_logger

parsl.set_file_logger(filename: str, name: str = 'parsl', level: int = 10, format_string: Optional[str]
= None)

Add a stream log handler.

Parameters

• filename (-) – Name of the file to write logs to

• name (-) – Logger name

• level (-) – Set the logging level.

• format_string (-) – Set the format string

Returns

• None

5.2.4 parsl.addresses.address_by_hostname

parsl.addresses.address_by_hostname()→ str
Returns the hostname of the local host.

This will return an unusable value when the hostname cannot be resolved from workers.

5.2. Configuration 103

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

5.2.5 parsl.addresses.address_by_interface

parsl.addresses.address_by_interface(ifname: str)→ str
Returns the IP address of the given interface name, e.g. ‘eth0’

This is taken from a Stack Overflow answer: https://stackoverflow.com/questions/24196932/
how-can-i-get-the-ip-address-of-eth0-in-python#24196955

Parameters ifname (str) – Name of the interface whose address is to be returned. Required.

5.2.6 parsl.addresses.address_by_query

parsl.addresses.address_by_query(timeout: float = 30)→ str
Finds an address for the local host by querying ipify. This may return an unusable value when the host is behind
NAT, or when the internet-facing address is not reachable from workers. Parameters: ———–

timeout [float] Timeout for the request in seconds. Default: 30s

5.2.7 parsl.addresses.address_by_route

parsl.addresses.address_by_route()→ str
Finds an address for the local host by querying the local routing table for the route to Google DNS.

This will return an unusable value when the internet-facing address is not reachable from workers.

5.2.8 parsl.utils.get_all_checkpoints

parsl.utils.get_all_checkpoints(rundir: str = 'runinfo')→ List[str]
Finds the checkpoints from all runs in the rundir.

Kwargs:

• rundir(str) : Path to the runinfo directory

Returns

• a list suitable for the checkpoint_files parameter of Config

5.2.9 parsl.utils.get_last_checkpoint

parsl.utils.get_last_checkpoint(rundir: str = 'runinfo')→ List[str]
Finds the checkpoint from the last run, if one exists.

Note that checkpoints are incremental, and this helper will not find previous checkpoints from earlier than the
most recent run. If you want that behaviour, see get_all_checkpoints.

Kwargs:

• rundir(str) : Path to the runinfo directory

Returns

• a list suitable for the checkpoint_files parameter of Config, with 0 or 1 elements

104 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://stackoverflow.com/questions/24196932/how-can-i-get-the-ip-address-of-eth0-in-python#24196955
https://stackoverflow.com/questions/24196932/how-can-i-get-the-ip-address-of-eth0-in-python#24196955
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

5.3 Channels

parsl.channels.base.Channel For certain resources such as campus clusters or su-
percomputers at research laboratories, resource require-
ments may require authentication.

parsl.channels.LocalChannel This is not even really a channel, since opening a local
shell is not heavy and done so infrequently that they do
not need a persistent channel

parsl.channels.SSHChannel SSH persistent channel.
parsl.channels.OAuthSSHChannel SSH persistent channel.
parsl.channels.SSHInteractiveLoginChannelSSH persistent channel.

5.3.1 parsl.channels.base.Channel

class parsl.channels.base.Channel
For certain resources such as campus clusters or supercomputers at research laboratories, resource requirements
may require authentication. For instance some resources may allow access to their job schedulers from only
their login-nodes which require you to authenticate on through SSH, GSI-SSH and sometimes even require two
factor authentication. Channels are simple abstractions that enable the ExecutionProvider component to talk to
the resource managers of compute facilities. The simplest Channel, LocalChannel, simply executes commands
locally on a shell, while the SshChannel authenticates you to remote systems.

Channels are usually called via the execute_wait function. For channels that execute remotely, a push_file
function allows you to copy over files.

+------------------
|

cmd, wtime ------->| execute_wait
(ec, stdout, stderr)<-|---+

|
src, dst_dir ------->| push_file

dst_path <--------|----+
|

dst_script_dir <------| script_dir
|
+-------------------

Channels should ensure that each launched command runs in a new process group, so that providers (such as
AdHocProvider and LocalProvider) which terminate long running commands using process groups can do so.

__init__()
Initialize self. See help(type(self)) for accurate signature.

5.3. Channels 105

Parsl Documentation, Release 1.1.0

Methods

__init__() Initialize self.
abspath(path) Return the absolute path.
close() Closes the channel.
execute_wait(cmd[, walltime, envs]) Executes the cmd, with a defined walltime.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory.
pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(source, dest_dir) Channel will take care of moving the file from source

to the destination directory

Attributes

script_dir This is a property.

5.3.2 parsl.channels.LocalChannel

class parsl.channels.LocalChannel(userhome='.', envs={}, script_dir=None)
This is not even really a channel, since opening a local shell is not heavy and done so infrequently that they do
not need a persistent channel

__init__(userhome='.', envs={}, script_dir=None)
Initialize the local channel. script_dir is required by set to a default.

KwArgs:

• userhome (string): (default=’.’) This is provided as a way to override and set a specific userhome

• envs (dict) : A dictionary of env variables to be set when launching the shell

• script_dir (string): Directory to place scripts

Methods

__init__([userhome, envs, script_dir]) Initialize the local channel.
abspath(path) Return the absolute path.
close() There’s nothing to close here, and this really doesn’t

do anything
execute_wait(cmd[, walltime, envs]) Synchronously execute a commandline string on the

shell.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory.
pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(source, dest_dir) If the source files dirpath is the same as dest_dir, a

copy is not necessary, and nothing is done.

106 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Attributes

script_dir This is a property.

5.3.3 parsl.channels.SSHChannel

class parsl.channels.SSHChannel(hostname, username=None, password=None,
script_dir=None, envs=None, gssapi_auth=False,
skip_auth=False, port=22, key_filename=None,
host_keys_filename=None)

SSH persistent channel. This enables remote execution on sites accessible via ssh. It is assumed that the user
has setup host keys so as to ssh to the remote host. Which goes to say that the following test on the commandline
should work:

>>> ssh <username>@<hostname>

__init__(hostname, username=None, password=None, script_dir=None, envs=None,
gssapi_auth=False, skip_auth=False, port=22, key_filename=None,
host_keys_filename=None)

Initialize a persistent connection to the remote system. We should know at this point whether ssh connec-
tivity is possible

Parameters hostname (-) – Hostname

KWargs:

• username (string) : Username on remote system

• password (string) : Password for remote system

• port : The port designated for the ssh connection. Default is 22.

• script_dir (string) : Full path to a script dir where generated scripts could be sent to.

• envs (dict) : A dictionary of environment variables to be set when executing commands

• key_filename (string or list): the filename, or list of filenames, of optional private key(s)

Raises:

Methods

__init__(hostname[, username, password, . . .]) Initialize a persistent connection to the remote sys-
tem.

abspath(path) Return the absolute path on the remote side.
close() Closes the channel.
execute_wait(cmd[, walltime, envs]) Synchronously execute a commandline string on the

shell.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory on the remote side.
prepend_envs(cmd[, env])
pull_file(remote_source, local_dir) Transport file on the remote side to a local directory

continues on next page

5.3. Channels 107

Parsl Documentation, Release 1.1.0

Table 14 – continued from previous page
push_file(local_source, remote_dir) Transport a local file to a directory on a remote ma-

chine

Attributes

script_dir This is a property.

5.3.4 parsl.channels.OAuthSSHChannel

class parsl.channels.OAuthSSHChannel(hostname, username=None, script_dir=None,
envs=None, port=22)

SSH persistent channel. This enables remote execution on sites accessible via ssh. This channel uses Globus
based OAuth tokens for authentication.

__init__(hostname, username=None, script_dir=None, envs=None, port=22)
Initialize a persistent connection to the remote system. We should know at this point whether ssh connec-
tivity is possible

Parameters hostname (-) – Hostname

KWargs:

• username (string) : Username on remote system

• script_dir (string) : Full path to a script dir where generated scripts could be sent to.

• envs (dict) : A dictionary of env variables to be set when executing commands

• port (int) : Port at which the SSHService is running

Raises:

Methods

__init__(hostname[, username, script_dir, . . .]) Initialize a persistent connection to the remote sys-
tem.

abspath(path) Return the absolute path on the remote side.
close() Closes the channel.
execute_wait(cmd[, walltime, envs]) Synchronously execute a commandline string on the

shell.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory on the remote side.
prepend_envs(cmd[, env])
pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(local_source, remote_dir) Transport a local file to a directory on a remote ma-

chine

108 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Attributes

script_dir This is a property.

5.3.5 parsl.channels.SSHInteractiveLoginChannel

class parsl.channels.SSHInteractiveLoginChannel(hostname, username=None, pass-
word=None, script_dir=None,
envs=None)

SSH persistent channel. This enables remote execution on sites accessible via ssh. This channel supports
interactive login and is appropriate when keys are not set up.

__init__(hostname, username=None, password=None, script_dir=None, envs=None)
Initialize a persistent connection to the remote system. We should know at this point whether ssh connec-
tivity is possible

Parameters hostname (-) – Hostname

KWargs:

• username (string) : Username on remote system

• password (string) : Password for remote system

• script_dir (string) : Full path to a script dir where generated scripts could be sent to.

• envs (dict) : A dictionary of env variables to be set when executing commands

Raises:

Methods

__init__(hostname[, username, password, . . .]) Initialize a persistent connection to the remote sys-
tem.

abspath(path) Return the absolute path on the remote side.
close() Closes the channel.
execute_wait(cmd[, walltime, envs]) Synchronously execute a commandline string on the

shell.
isdir(path) Return true if the path refers to an existing directory.
makedirs(path[, mode, exist_ok]) Create a directory on the remote side.
prepend_envs(cmd[, env])
pull_file(remote_source, local_dir) Transport file on the remote side to a local directory
push_file(local_source, remote_dir) Transport a local file to a directory on a remote ma-

chine

5.3. Channels 109

Parsl Documentation, Release 1.1.0

Attributes

script_dir This is a property.

5.4 Data management

parsl.app.futures.DataFuture A datafuture points at an AppFuture.
parsl.data_provider.data_manager.
DataManager

The DataManager is responsible for transferring input
and output data.

parsl.data_provider.staging.Staging This class defines the interface for file staging providers.
parsl.data_provider.files.File The Parsl File Class.
parsl.data_provider.ftp.
FTPSeparateTaskStaging

Performs FTP staging as a separate parsl level task.

parsl.data_provider.ftp.
FTPInTaskStaging

Performs FTP staging as a wrapper around the applica-
tion task.

parsl.data_provider.file_noop.
NoOpFileStaging
parsl.data_provider.globus.
GlobusStaging

Specification for accessing data on a remote executor
via Globus.

parsl.data_provider.http.
HTTPSeparateTaskStaging

A staging provider that Performs HTTP and HTTPS
staging as a separate parsl-level task.

parsl.data_provider.http.
HTTPInTaskStaging

A staging provider that performs HTTP and HTTPS
staging as in a wrapper around each task.

parsl.data_provider.rsync.
RSyncStaging

This staging provider will execute rsync on worker
nodes to stage in files from a remote location.

5.4.1 parsl.app.futures.DataFuture

class parsl.app.futures.DataFuture(fut, file_obj, tid=None)
A datafuture points at an AppFuture.

We are simply wrapping a AppFuture, and adding the specific case where, if the future is resolved i.e file exists,
then the DataFuture is assumed to be resolved.

__init__(fut, file_obj, tid=None)
Construct the DataFuture object.

If the file_obj is a string convert to a File.

Parameters

• fut (-) – AppFuture that this DataFuture will track

• file_obj (-) – Something representing file(s)

Kwargs:

• tid (task_id) : Task id that this DataFuture tracks

110 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Methods

__init__(fut, file_obj[, tid]) Construct the DataFuture object.
add_done_callback(fn) Attaches a callable that will be called when the future

finishes.
cancel() Cancel the future if possible.
cancelled() Return True if the future was cancelled.
done() Return True of the future was cancelled or finished

executing.
exception([timeout]) Return the exception raised by the call that the future

represents.
parent_callback(parent_fu) Callback from executor future to update the parent.
result([timeout]) Return the result of the call that the future represents.
running() Return True if the future is currently executing.
set_exception(exception) Sets the result of the future as being the given excep-

tion.
set_result(result) Sets the return value of work associated with the fu-

ture.
set_running_or_notify_cancel() Mark the future as running or process any cancel no-

tifications.

Attributes

filename Filepath of the File object this datafuture represents.
filepath Filepath of the File object this datafuture represents.
tid Returns the task_id of the task that will resolve this

DataFuture.

5.4.2 parsl.data_provider.data_manager.DataManager

class parsl.data_provider.data_manager.DataManager(dfk: DataFlowKernel)
The DataManager is responsible for transferring input and output data.

__init__(dfk: DataFlowKernel)→ None
Initialize the DataManager.

Parameters dfk (-) – The DataFlowKernel that this DataManager is managing data for.

Methods

__init__(dfk) Initialize the DataManager.
optionally_stage_in(input, func, executor)
replace_task(file, func, executor) This will give staging providers the chance to wrap

(or replace entirely!) the task function.
replace_task_stage_out(file, func, execu-
tor)

This will give staging providers the chance to wrap
(or replace entirely!) the task function.

continues on next page

5.4. Data management 111

https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.1.0

Table 23 – continued from previous page
stage_in(file, input, executor) Transport the input from the input source to the ex-

ecutor, if it is file-like, returning a DataFuture that
wraps the stage-in operation.

stage_out(file, executor, app_fu) Transport the file from the local filesystem to the re-
mote Globus endpoint.

5.4.3 parsl.data_provider.staging.Staging

class parsl.data_provider.staging.Staging
This class defines the interface for file staging providers.

For each file to be staged in, the data manager will present the file to each configured Staging provider in
turn: first, it will ask if the provider can stage this file by calling can_stage_in, and if so, it will call both
stage_in and replace_task to give the provider the opportunity to perform staging.

For each file to be staged out, the data manager will follow the same pattern using the corresponding stage out
methods of this class.

The default implementation of this class rejects all files, and performs no staging actions.

To implement a concrete provider, one or both of the can_stage_* methods should be overridden to match
the appropriate files, and then the corresponding stage_* and/or replace_task* methods should be im-
plemented.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
can_stage_in(file) Given a File object, decide if this staging provider

can stage the file.
can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

112 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

5.4.4 parsl.data_provider.files.File

class parsl.data_provider.files.File(url: str)
The Parsl File Class.

This represents the global, and sometimes local, URI/path to a file.

Staging-in mechanisms may annotate a file with a local path recording the path at the far end of a staging action.
It is up to the user of the File object to track which local scope that local path actually refers to.

__init__(url: str)
Construct a File object from a url string.

Parameters url (-) – url string of the file e.g. - ‘input.txt’ - ‘file:///scratch/
proj101/input.txt’ - ‘globus://go#ep1/~/data/input.txt’ - ‘globus://ddb59aef-6d04-11e5-ba46-
22000b92c6ec/home/johndoe/data/input.txt’

Methods

__init__(url) Construct a File object from a url string.
cleancopy() Returns a copy of the file containing only the global

immutable state, without any mutable site-local lo-
cal_path information.

Attributes

filepath Return the resolved filepath on the side where it is
called from.

5.4.5 parsl.data_provider.ftp.FTPSeparateTaskStaging

class parsl.data_provider.ftp.FTPSeparateTaskStaging
Performs FTP staging as a separate parsl level task.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
can_stage_in(file) Given a File object, decide if this staging provider

can stage the file.
can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

continues on next page

5.4. Data management 113

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
file:///scratch/proj101/input.txt
file:///scratch/proj101/input.txt

Parsl Documentation, Release 1.1.0

Table 27 – continued from previous page
stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity

to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

5.4.6 parsl.data_provider.ftp.FTPInTaskStaging

class parsl.data_provider.ftp.FTPInTaskStaging
Performs FTP staging as a wrapper around the application task.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
can_stage_in(file) Given a File object, decide if this staging provider

can stage the file.
can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, f) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

5.4.7 parsl.data_provider.file_noop.NoOpFileStaging

class parsl.data_provider.file_noop.NoOpFileStaging

__init__()
Initialize self. See help(type(self)) for accurate signature.

114 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Methods

__init__() Initialize self.
can_stage_in(file) Given a File object, decide if this staging provider

can stage the file.
can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

5.4.8 parsl.data_provider.globus.GlobusStaging

class parsl.data_provider.globus.GlobusStaging(endpoint_uuid: str, endpoint_path: Op-
tional[str] = None, local_path: Op-
tional[str] = None)

Specification for accessing data on a remote executor via Globus.

Parameters

• endpoint_uuid (str) – Universally unique identifier of the Globus endpoint at which
the data can be accessed. This can be found in the Manage Endpoints page.

• endpoint_path (str, optional) – FIXME

• local_path (str, optional) – FIXME

__init__(endpoint_uuid: str, endpoint_path: Optional[str] = None, local_path: Optional[str] =
None)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(endpoint_uuid[, endpoint_path, . . .]) Initialize self.
can_stage_in(file) Given a File object, decide if this staging provider

can stage the file.
can_stage_out(file) Like can_stage_in, but for staging out.
initialize_globus()
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

continues on next page

5.4. Data management 115

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.globus.org/app/endpoints
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

Table 30 – continued from previous page
stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity

to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

5.4.9 parsl.data_provider.http.HTTPSeparateTaskStaging

class parsl.data_provider.http.HTTPSeparateTaskStaging
A staging provider that Performs HTTP and HTTPS staging as a separate parsl-level task. This requires a shared
file system on the executor.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
can_stage_in(file) Given a File object, decide if this staging provider

can stage the file.
can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, func) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

5.4.10 parsl.data_provider.http.HTTPInTaskStaging

class parsl.data_provider.http.HTTPInTaskStaging
A staging provider that performs HTTP and HTTPS staging as in a wrapper around each task. In contrast to
HTTPSeparateTaskStaging, this provider does not require a shared file system.

__init__()
Initialize self. See help(type(self)) for accurate signature.

116 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Methods

__init__() Initialize self.
can_stage_in(file) Given a File object, decide if this staging provider

can stage the file.
can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, f) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
func)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, app_fu) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

5.4.11 parsl.data_provider.rsync.RSyncStaging

class parsl.data_provider.rsync.RSyncStaging(hostname)
This staging provider will execute rsync on worker nodes to stage in files from a remote location.

Worker nodes must be able to authenticate to the rsync server without interactive authentication - for example,
worker initialization could include an appropriate SSH key configuration.

The submit side will need to run an rsync-compatible server (for example, an ssh server with the rsync binary
installed)

__init__(hostname)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(hostname) Initialize self.
can_stage_in(file) Given a File object, decide if this staging provider

can stage the file.
can_stage_out(file) Like can_stage_in, but for staging out.
replace_task(dm, executor, file, f) For a file to be staged in, optionally return a replace-

ment app function, which usually should be the orig-
inal app function wrapped in staging code.

replace_task_stage_out(dm, executor, file,
f)

For a file to be staged out, optionally return a replace-
ment app function, which usually should be the orig-
inal app function wrapped in staging code.

stage_in(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-in and to launch arbitrary tasks
which must complete as part of stage-in.

stage_out(dm, executor, file, parent_fut) This call gives the staging provider an opportunity
to prepare for stage-out and to launch arbitrary tasks
which must complete as part of stage-out.

5.4. Data management 117

Parsl Documentation, Release 1.1.0

5.5 Executors

parsl.executors.base.ParslExecutor Executors are abstractions that represent available com-
pute resources to which you could submit arbitrary App
tasks.

parsl.executors.ThreadPoolExecutor A thread-based executor.
parsl.executors.
HighThroughputExecutor

Executor designed for cluster-scale

parsl.executors.WorkQueueExecutor Executor to use Work Queue batch system
parsl.executors.ExtremeScaleExecutor Executor designed for leadership class supercomputer

scale
parsl.executors.LowLatencyExecutor TODO: docstring for LowLatencyExecutor
parsl.executors.swift_t.
TurbineExecutor

The Turbine executor.

5.5.1 parsl.executors.base.ParslExecutor

class parsl.executors.base.ParslExecutor
Executors are abstractions that represent available compute resources to which you could submit arbitrary App
tasks.

This is a metaclass that only enforces concrete implementations of functionality by the child classes.

In addition to the listed methods, a ParslExecutor instance must always have a member field:

label: str - a human readable label for the executor, unique with respect to other executors.

An executor may optionally expose:

storage_access: List[parsl.data_provider.staging.Staging] - a list of staging providers that will
be used for file staging. In the absence of this attribute, or if this attribute is None, then a
default value of parsl.data_provider.staging.default_staging will be used
by the staging code.

Typechecker note: Ideally storage_access would be declared on executor __init__ methods as
List[Staging] - however, lists are by default invariant, not co-variant, and it looks like @type-
guard cannot be persuaded otherwise. So if you’re implementing an executor and want to @type-
guard the constructor, you’ll have to use List[Any] here.

__init__()
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
create_monitoring_info(status) Create a monitoring message for each block based

on the poll status.
handle_errors(error_handler, status) This method is called by the error management in-

frastructure after a status poll.
monitor_resources() Should resource monitoring happen for tasks on run-

ning on this executor?
scale_in(blocks) Scale in method.

continues on next page

118 Chapter 5. API Reference guide

https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.1.0

Table 35 – continued from previous page
scale_out(blocks) Scale out method.
set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor

as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown() Shutdown the executor.
start() Start the executor.
status() Return the status of all jobs/blocks currently known

to this executor.
submit(func, resource_specification, *args, . . .) Submit.

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

error_management_enabled Indicates whether worker error management is sup-
ported by this executor.

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
run_dir Path to the run directory.
scaling_enabled Specify if scaling is enabled.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks Contains a dictionary mapping task IDs to the corre-

sponding Future objects for all tasks that have been
submitted to this executor.

5.5.2 parsl.executors.ThreadPoolExecutor

class parsl.executors.ThreadPoolExecutor(label: str = 'threads', max_threads: int = 2,
thread_name_prefix: str = '', storage_access:
List[Any] = None, working_dir: Optional[str] =
None, managed: bool = True)

A thread-based executor.

Parameters

• max_threads (int) – Number of threads. Default is 2.

• thread_name_prefix (string) – Thread name prefix (only supported in python
v3.6+).

• storage_access (list of Staging) – Specifications for accessing data this executor
remotely.

• managed (bool) – If True, parsl will control dynamic scaling of this executor, and be
responsible. Otherwise, this is managed by the user.

__init__(label: str = 'threads', max_threads: int = 2, thread_name_prefix: str = '', storage_access:
List[Any] = None, working_dir: Optional[str] = None, managed: bool = True)

Initialize self. See help(type(self)) for accurate signature.

5.5. Executors 119

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.1.0

Methods

__init__([label, max_threads, . . .]) Initialize self.
create_monitoring_info(status) Create a monitoring message for each block based

on the poll status.
handle_errors(error_handler, status) This method is called by the error management in-

frastructure after a status poll.
monitor_resources() Resource monitoring sometimes deadlocks when us-

ing threads, so this function returns false to disable
it.

scale_in(blocks) Scale in the number of active blocks by specified
amount.

scale_out([workers]) Scales out the number of active workers by 1.
set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor

as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown([block]) Shutdown the ThreadPool.
start() Start the executor.
status() Return the status of all jobs/blocks currently known

to this executor.
submit(func, resource_specification, *args, . . .) Submits work to the thread pool.

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

error_management_enabled Indicates whether worker error management is sup-
ported by this executor.

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
provider
run_dir Path to the run directory.
scaling_enabled Specify if scaling is enabled.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks Contains a dictionary mapping task IDs to the corre-

sponding Future objects for all tasks that have been
submitted to this executor.

120 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

5.5.3 parsl.executors.HighThroughputExecutor

class parsl.executors.HighThroughputExecutor(label: str = 'HighThrough-
putExecutor', provider:
parsl.providers.provider_base.ExecutionProvider
= LocalProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
cmd_timeout=30, init_blocks=1,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1,
min_blocks=0, move_files=None,
nodes_per_block=1, parallelism=1,
walltime='00:15:00', worker_init=''),
launch_cmd: Optional[str] = None,
address: Optional[str] = None,
worker_ports: Optional[Tuple[int,
int]] = None, worker_port_range:
Optional[Tuple[int, int]] = (54000,
55000), interchange_port_range: Op-
tional[Tuple[int, int]] = (55000,
56000), storage_access: Op-
tional[List[parsl.data_provider.staging.Staging]]
= None, working_dir: Optional[str]
= None, worker_debug: bool =
False, cores_per_worker: float = 1.0,
mem_per_worker: Optional[float]
= None, max_workers: Union[int,
float] = inf, cpu_affinity: str = 'none',
prefetch_capacity: int = 0, heart-
beat_threshold: int = 120, heart-
beat_period: int = 30, poll_period:
int = 10, address_probe_timeout: Op-
tional[int] = None, managed: bool =
True, worker_logdir_root: Optional[str] =
None)

Executor designed for cluster-scale

The HighThroughputExecutor system has the following components:

1. The HighThroughputExecutor instance which is run as part of the Parsl script.

2. The Interchange which is acts as a load-balancing proxy between workers and Parsl

3. The multiprocessing based worker pool which coordinates task execution over several cores on a node.

4. ZeroMQ pipes connect the HighThroughputExecutor, Interchange and the process_worker_pool

Here is a diagram

| Data | Executor | Interchange | External Process(es)
| Flow | | |

Task | Kernel | | |
+----->|-------->|------------>|->outgoing_q---|-> process_worker_pool
| | | | batching | | |

Parsl<---Fut-| | | load-balancing| result exception
^ | | | watchdogs | | |

(continues on next page)

5.5. Executors 121

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

(continued from previous page)

| | | Q_mngmnt | | V V
| | | Thread<--|-incoming_q<---|--- +---------+
| | | | | |
| | | | | |
+----update_fut-----+

Each of the workers in each process_worker_pool has access to its local rank through an environmental variable,
PARSL_WORKER_RANK. The local rank is unique for each process and is an integer in the range from 0 to the
number of workers per in the pool minus 1. The workers also have access to the ID of the worker pool as
PARSL_WORKER_POOL_ID and the size of the worker pool as PARSL_WORKER_COUNT.

Parameters

• provider (ExecutionProvider) –

Provider to access computation resources. Can be one of EC2Provider, Cobalt,
Condor, GoogleCloud, GridEngine, Local, GridEngine, Slurm, or
Torque.

• label (str) – Label for this executor instance.

• launch_cmd (str) – Command line string to launch the process_worker_pool
from the provider. The command line string will be formatted with appropri-
ate values for the following values (debug, task_url, result_url, cores_per_worker,
nodes_per_block, heartbeat_period ,heartbeat_threshold, logdir). For exam-
ple: launch_cmd=”process_worker_pool.py {debug} -c {cores_per_worker}
–task_url={task_url} –result_url={result_url}”

• address (string) – An address to connect to the main Parsl process which is reachable
from the network in which workers will be running. This can be either a hostname as
returned by hostname or an IP address. Most login nodes on clusters have several network
interfaces available, only some of which can be reached from the compute nodes. By default,
the executor will attempt to enumerate and connect through all possible addresses. Setting
an address here overrides the default behavior. default=None

• worker_ports ((int, int)) – Specify the ports to be used by workers to connect to
Parsl. If this option is specified, worker_port_range will not be honored.

• worker_port_range ((int, int)) – Worker ports will be chosen between the two
integers provided.

• interchange_port_range ((int, int)) – Port range used by Parsl to communi-
cate with the Interchange.

• working_dir (str) – Working dir to be used by the executor.

• worker_debug (Bool) – Enables worker debug logging.

• managed (Bool) – If this executor is managed by the DFK or externally handled.

• cores_per_worker (float) – cores to be assigned to each worker. Oversubscription
is possible by setting cores_per_worker < 1.0. Default=1

• mem_per_worker (float) – GB of memory required per worker. If this option is spec-
ified, the node manager will check the available memory at startup and limit the number of
workers such that the there’s sufficient memory for each worker. Default: None

• max_workers (int) – Caps the number of workers launched by the manager. Default:
infinity

122 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.1.0

• cpu_affinity (string) – Whether or how each worker process sets thread affinity.
Options are “none” to forgo any CPU affinity configuration, “block” to assign adjacent
cores to workers (ex: assign 0-1 to worker 0, 2-3 to worker 1), and “alternating” to assign
cores to workers in round-robin (ex: assign 0,2 to worker 0, 1,3 to worker 1).

• prefetch_capacity (int) – Number of tasks that could be prefetched over available
worker capacity. When there are a few tasks (<100) or when tasks are long running, this
option should be set to 0 for better load balancing. Default is 0.

• address_probe_timeout (int | None) – Managers attempt connecting over many
different addesses to determine a viable address. This option sets a time limit in seconds on
the connection attempt. Default of None implies 30s timeout set on worker.

• heartbeat_threshold (int) – Seconds since the last message from the counterpart
in the communication pair: (interchange, manager) after which the counterpart is assumed
to be un-available. Default: 120s

• heartbeat_period (int) – Number of seconds after which a heartbeat message indi-
cating liveness is sent to the counterpart (interchange, manager). Default: 30s

• poll_period (int) – Timeout period to be used by the executor components in millisec-
onds. Increasing poll_periods trades performance for cpu efficiency. Default: 10ms

• worker_logdir_root (string) – In case of a remote file system, specify the path to
where logs will be kept.

__init__(label: str = 'HighThroughputExecutor', provider: parsl.providers.provider_base.ExecutionProvider
= LocalProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
cmd_timeout=30, init_blocks=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0, move_files=None, nodes_per_block=1,
parallelism=1, walltime='00:15:00', worker_init=''), launch_cmd: Optional[str] =
None, address: Optional[str] = None, worker_ports: Optional[Tuple[int, int]]
= None, worker_port_range: Optional[Tuple[int, int]] = (54000, 55000), inter-
change_port_range: Optional[Tuple[int, int]] = (55000, 56000), storage_access: Op-
tional[List[parsl.data_provider.staging.Staging]] = None, working_dir: Optional[str] =
None, worker_debug: bool = False, cores_per_worker: float = 1.0, mem_per_worker:
Optional[float] = None, max_workers: Union[int, float] = inf, cpu_affinity: str = 'none',
prefetch_capacity: int = 0, heartbeat_threshold: int = 120, heartbeat_period: int = 30,
poll_period: int = 10, address_probe_timeout: Optional[int] = None, managed: bool =
True, worker_logdir_root: Optional[str] = None)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([label, provider, launch_cmd, . . .]) Initialize self.
create_monitoring_info(status) Create a msg for monitoring based on the poll status
handle_errors(error_handler, status) This method is called by the error management in-

frastructure after a status poll.
hold_worker(worker_id) Puts a worker on hold, preventing scheduling of ad-

ditional tasks to it.
initialize_scaling() Compose the launch command and call the scale_out
monitor_resources() Should resource monitoring happen for tasks on run-

ning on this executor?
continues on next page

5.5. Executors 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

Table 39 – continued from previous page
scale_in([blocks, block_ids, force, . . .]) Scale in the number of active blocks by specified

amount.
scale_out([blocks]) Scales out the number of blocks by “blocks”
set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor

as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown([hub, targets, block]) Shutdown the executor, including all workers and
controllers.

start() Create the Interchange process and connect to it.
status() Return status of all blocks.
submit(func, resource_specification, *args, . . .) Submits work to the the outgoing_q.
weakref_cb([q]) We do not use this yet.

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

connected_managers
connected_workers
error_management_enabled Indicates whether worker error management is sup-

ported by this executor.
executor_exception Returns an exception that indicates why this executor

is in an irrecoverable state.
hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
outstanding
provider
run_dir Path to the run directory.
scaling_enabled Specify if scaling is enabled.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks Contains a dictionary mapping task IDs to the corre-

sponding Future objects for all tasks that have been
submitted to this executor.

124 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

5.5.4 parsl.executors.WorkQueueExecutor

class parsl.executors.WorkQueueExecutor(label: str = 'WorkQueueExecutor', provider:
parsl.providers.provider_base.ExecutionProvider
= LocalProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
cmd_timeout=30, init_blocks=1,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1,
min_blocks=0, move_files=None,
nodes_per_block=1, parallelism=1, wall-
time='00:15:00', worker_init=''), working_dir:
str = '.', managed: bool = True, project_name:
Optional[str] = None, project_password_file:
Optional[str] = None, address: Optional[str] =
None, port: int = 0, env: Optional[Dict] = None,
shared_fs: bool = False, storage_access: Op-
tional[List[parsl.data_provider.staging.Staging]]
= None, use_cache: bool = False, source: bool
= False, pack: bool = False, extra_pkgs: Op-
tional[List[str]] = None, autolabel: bool = False,
autolabel_window: int = 1, autocategory: bool =
True, init_command: str = '', worker_options: str
= '', full_debug: bool = True)

Executor to use Work Queue batch system

The WorkQueueExecutor system utilizes the Work Queue framework to efficiently delegate Parsl apps to remote
machines in clusters and grids using a fault-tolerant system. Users can run the work_queue_worker program on
remote machines to connect to the WorkQueueExecutor, and Parsl apps will then be sent out to these machines
for execution and retrieval.

Parameters

• label (str) – A human readable label for the executor, unique with respect to other Work
Queue master programs. Default is “WorkQueueExecutor”.

• working_dir (str) – Location for Parsl to perform app delegation to the Work Queue
system. Defaults to current directory.

• managed (bool) – Whether this executor is managed by the DFK or externally handled.
Default is True (managed by DFK).

• project_name (str) – If given, Work Queue master process name. Default is None.
Overrides address.

• project_password_file (str) – Optional password file for the work queue project.
Default is None.

• address (str) – The ip to contact this work queue master process. If not given,
uses the address of the current machine as returned by socket.gethostname(). Ignored if
project_name is specified.

• port (int) – TCP port on Parsl submission machine for Work Queue workers to connect
to. Workers will specify this port number when trying to connect to Parsl. Default is 9123.

• env (dict{str}) – Dictionary that contains the environmental variables that need to be
set on the Work Queue worker machine.

5.5. Executors 125

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.1.0

• shared_fs (bool) – Define if working in a shared file system or not. If Parsl and the
Work Queue workers are on a shared file system, Work Queue does not need to transfer and
rename files for execution. Default is False.

• use_cache (bool) – Whether workers should cache files that are common to tasks.
Warning: Two files are considered the same if they have the same filepath name. Use with
care when reusing the executor instance across multiple parsl workflows. Default is False.

• source (bool) – Choose whether to transfer parsl app information as source code. (Note:
this increases throughput for @python_apps, but the implementation does not include
functionality for @bash_apps, and thus source=False must be used for programs utilizing
@bash_apps.) Default is False. Set to True if pack is True

• pack (bool) – Use conda-pack to prepare a self-contained Python evironment for each
task. This greatly increases task latency, but does not require a common environment or
shared FS on execution nodes. Implies source=True.

• extra_pkgs (list) – List of extra pip/conda package names to include when packing the
environment. This may be useful if the app executes other (possibly non-Python) programs
provided via pip or conda. Scanning the app source for imports would not detect these
dependencies, so they need to be manually specified.

• autolabel (bool) – Use the Resource Monitor to automatically determine resource la-
bels based on observed task behavior.

• autolabel_window (int) – Set the number of tasks considered for autolabeling. Work
Queue will wait for a series of N tasks with steady resource requirements before making a
decision on labels. Increasing this parameter will reduce the number of failed tasks due to
resource exhaustion when autolabeling, at the cost of increased resources spent collecting
stats.

• autocategory (bool) – Place each app in its own category by default. If all invocations
of an app have similar performance characteristics, this will provide a reasonable set of
categories automatically.

• init_command (str) – Command line to run before executing a task in a worker. Default
is ‘’.

• worker_options (str) – Extra options passed to work_queue_worker. Default is ‘’.

__init__(label: str = 'WorkQueueExecutor', provider: parsl.providers.provider_base.ExecutionProvider
= LocalProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
cmd_timeout=30, init_blocks=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0, move_files=None, nodes_per_block=1,
parallelism=1, walltime='00:15:00', worker_init=''), working_dir: str = '.', managed: bool
= True, project_name: Optional[str] = None, project_password_file: Optional[str] = None,
address: Optional[str] = None, port: int = 0, env: Optional[Dict] = None, shared_fs:
bool = False, storage_access: Optional[List[parsl.data_provider.staging.Staging]] = None,
use_cache: bool = False, source: bool = False, pack: bool = False, extra_pkgs: Op-
tional[List[str]] = None, autolabel: bool = False, autolabel_window: int = 1, autocategory:
bool = True, init_command: str = '', worker_options: str = '', full_debug: bool = True)

Initialize self. See help(type(self)) for accurate signature.

126 Chapter 5. API Reference guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.1.0

Methods

__init__([label, provider, working_dir, . . .]) Initialize self.
create_monitoring_info(status) Create a monitoring message for each block based

on the poll status.
handle_errors(error_handler, status) This method is called by the error management in-

frastructure after a status poll.
initialize_scaling() Compose the launch command and call scale out
monitor_resources() Should resource monitoring happen for tasks on run-

ning on this executor?
run_dir([value]) Path to the run directory.
scale_in(count) Scale in method.
scale_out([blocks]) Scale out method.
scaling_enabled() Specify if scaling is enabled.
set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor

as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown(*args, **kwargs) Shutdown the executor.
start() Create submit process and collector thread to create,

send, and retrieve Parsl tasks within the Work Queue
system.

status() Return the status of all jobs/blocks currently known
to this executor.

submit(func, resource_specification, *args, . . .) Processes the Parsl app by its arguments and submits
the function information to the task queue, to be ex-
ecuted using the Work Queue system.

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

error_management_enabled Indicates whether worker error management is sup-
ported by this executor.

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
provider
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks Contains a dictionary mapping task IDs to the corre-

sponding Future objects for all tasks that have been
submitted to this executor.

5.5. Executors 127

Parsl Documentation, Release 1.1.0

5.5.5 parsl.executors.ExtremeScaleExecutor

class parsl.executors.ExtremeScaleExecutor(label='ExtremeScaleExecutor',
provider=LocalProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
cmd_timeout=30, init_blocks=1,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1,
min_blocks=0, move_files=None,
nodes_per_block=1, paral-
lelism=1, walltime='00:15:00',
worker_init=''), launch_cmd=None, ad-
dress='127.0.0.1', worker_ports=None,
worker_port_range=(54000, 55000), in-
terchange_port_range=(55000, 56000),
storage_access=None, working_dir=None,
worker_debug=False, ranks_per_node=1,
heartbeat_threshold=120, heart-
beat_period=30, managed=True)

Executor designed for leadership class supercomputer scale

The ExtremeScaleExecutor extends the Executor interface to enable task execution on supercomputing systems
(>1K Nodes). When functions and their arguments are submitted to the interface, a future is returned that tracks
the execution of the function on a distributed compute environment.

The ExtremeScaleExecutor system has the following components:

1. The ExtremeScaleExecutor instance which is run as part of the Parsl script

2. The Interchange which is acts as a load-balancing proxy between workers and Parsl

3. The MPI based mpi_worker_pool which coordinates task execution over several nodes With MPI
communication between workers, we can exploit low latency networking on HPC systems.

4. ZeroMQ pipes that connect the ExtremeScaleExecutor, Interchange and the mpi_worker_pool

Our design assumes that there is a single MPI application (mpi_worker_pool) running over a block and that
there might be several such instances.

Here is a diagram

| Data | Executor | Interchange | External Process(es)
| Flow | | |

Task | Kernel | | |
+----->|-------->|------------>|->outgoing_q---|-> mpi_worker_pool
| | | | batching | | |

Parsl<---Fut-| | | load-balancing| result exception
^ | | | watchdogs | | |
| | | Q_mngmnt | | V V
| | | Thread<--|-incoming_q<---|--- +---------+
| | | | | |
| | | | | |
+----update_fut-----+

Parameters

• provider (ExecutionProvider) –

128 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Provider to access computation resources. Can be any providers in parsl.providers:
Cobalt, Condor, GoogleCloud, GridEngine, Local, GridEngine, Slurm,
or Torque.

• label (str) – Label for this executor instance.

• launch_cmd (str) – Command line string to launch the mpi_worker_pool from the
provider. The command line string will be formatted with appropriate values for the follow-
ing values (debug, task_url, result_url, ranks_per_node, nodes_per_block, heartbeat_period
,heartbeat_threshold, logdir). For example: launch_cmd=”mpiexec -np {ranks_per_node}
mpi_worker_pool.py {debug} –task_url={task_url} –result_url={result_url}”

• address (string) – An address to connect to the main Parsl process which is reachable
from the network in which workers will be running. This can be either a hostname as
returned by hostname or an IP address. Most login nodes on clusters have several network
interfaces available, only some of which can be reached from the compute nodes. Some trial
and error might be necessary to identify what addresses are reachable from compute nodes.

• worker_ports ((int, int)) – Specify the ports to be used by workers to connect to
Parsl. If this option is specified, worker_port_range will not be honored.

• worker_port_range ((int, int)) – Worker ports will be chosen between the two
integers provided.

• interchange_port_range ((int, int)) – Port range used by Parsl to communi-
cate with the Interchange.

• working_dir (str) – Working dir to be used by the executor.

• worker_debug (Bool) – Enables engine debug logging.

• managed (Bool) – If this executor is managed by the DFK or externally handled.

• ranks_per_node (int) – Specify the ranks to be launched per node.

• heartbeat_threshold (int) – Seconds since the last message from the counterpart
in the communication pair: (interchange, manager) after which the counterpart is assumed
to be un-available. Default:120s

• heartbeat_period (int) – Number of seconds after which a heartbeat message indi-
cating liveness is sent to the counterpart (interchange, manager). Default:30s

__init__(label='ExtremeScaleExecutor', provider=LocalProvider(channel=LocalChannel(envs={},
script_dir=None, userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
cmd_timeout=30, init_blocks=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0, move_files=None, nodes_per_block=1,
parallelism=1, walltime='00:15:00', worker_init=''), launch_cmd=None, ad-
dress='127.0.0.1', worker_ports=None, worker_port_range=(54000, 55000), in-
terchange_port_range=(55000, 56000), storage_access=None, working_dir=None,
worker_debug=False, ranks_per_node=1, heartbeat_threshold=120, heartbeat_period=30,
managed=True)

Initialize self. See help(type(self)) for accurate signature.

5.5. Executors 129

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.1.0

Methods

__init__([label, provider, launch_cmd, . . .]) Initialize self.
create_monitoring_info(status) Create a msg for monitoring based on the poll status
handle_errors(error_handler, status) This method is called by the error management in-

frastructure after a status poll.
hold_worker(worker_id) Puts a worker on hold, preventing scheduling of ad-

ditional tasks to it.
initialize_scaling() Compose the launch command and call the scale_out
monitor_resources() Should resource monitoring happen for tasks on run-

ning on this executor?
scale_in([blocks, block_ids, force, . . .]) Scale in the number of active blocks by specified

amount.
scale_out([blocks]) Scales out the number of blocks by “blocks”
set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor

as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown([hub, targets, block]) Shutdown the executor, including all workers and
controllers.

start() Create the Interchange process and connect to it.
status() Return status of all blocks.
submit(func, resource_specification, *args, . . .) Submits work to the the outgoing_q.
weakref_cb([q]) We do not use this yet.

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

connected_managers
connected_workers
error_management_enabled Indicates whether worker error management is sup-

ported by this executor.
executor_exception Returns an exception that indicates why this executor

is in an irrecoverable state.
hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
outstanding
provider
run_dir Path to the run directory.
scaling_enabled Specify if scaling is enabled.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks Contains a dictionary mapping task IDs to the corre-

sponding Future objects for all tasks that have been
submitted to this executor.

130 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

5.5.6 parsl.executors.LowLatencyExecutor

class parsl.executors.LowLatencyExecutor(label='LowLatencyExecutor',
provider=LocalProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
cmd_timeout=30, init_blocks=1,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1,
min_blocks=0, move_files=None,
nodes_per_block=1, parallelism=1,
walltime='00:15:00', worker_init=''),
launch_cmd=None, address='127.0.0.1',
worker_port=None, worker_port_range=(54000,
55000), interchange_port_range=(55000,
56000), working_dir=None,
worker_debug=False, workers_per_node=1,
managed=True)

TODO: docstring for LowLatencyExecutor

__init__(label='LowLatencyExecutor', provider=LocalProvider(channel=LocalChannel(envs={},
script_dir=None, userhome='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
cmd_timeout=30, init_blocks=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), max_blocks=1, min_blocks=0, move_files=None, nodes_per_block=1,
parallelism=1, walltime='00:15:00', worker_init=''), launch_cmd=None, ad-
dress='127.0.0.1', worker_port=None, worker_port_range=(54000, 55000), inter-
change_port_range=(55000, 56000), working_dir=None, worker_debug=False, work-
ers_per_node=1, managed=True)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([label, provider, launch_cmd, . . .]) Initialize self.
create_monitoring_info(status) Create a monitoring message for each block based

on the poll status.
handle_errors(error_handler, status) This method is called by the error management in-

frastructure after a status poll.
monitor_resources() Should resource monitoring happen for tasks on run-

ning on this executor?
scale_in(blocks) Scale in the number of active blocks by specified

amount.
scale_out([blocks]) Scales out the number of active workers by the num-

ber of blocks specified.
set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor

as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown([hub, targets, block]) Shutdown the executor, including all workers and
controllers.

start() Create the Interchange process and connect to it.
status() Return status of all blocks.
submit(func, resource_specification, *args, . . .) TODO: docstring

5.5. Executors 131

Parsl Documentation, Release 1.1.0

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

error_management_enabled Indicates whether worker error management is sup-
ported by this executor.

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
provider
run_dir Path to the run directory.
scaling_enabled Specify if scaling is enabled.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks Contains a dictionary mapping task IDs to the corre-

sponding Future objects for all tasks that have been
submitted to this executor.

5.5.7 parsl.executors.swift_t.TurbineExecutor

class parsl.executors.swift_t.TurbineExecutor(label='turbine', storage_access=None,
working_dir=None, managed=True)

The Turbine executor.

Bypass the Swift/T language and run on top off the Turbine engines in an MPI environment.

Here is a diagram

| Data | Executor | IPC | External Process(es)
| Flow | | |

Task | Kernel | | |
+----->|-------->|------------>|outgoing_q -|-> Worker_Process
| | | | | | |

Parsl<---Fut-| | | | result exception
^ | | | | | |
| | | Q_mngmnt | | V V
| | | Thread<--|incoming_q<-|--- +---------+
| | | | | |
| | | | | |
+----update_fut-----+

__init__(label='turbine', storage_access=None, working_dir=None, managed=True)
Initialize the thread pool.

Trying to implement the emews model.

132 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Methods

__init__([label, storage_access, . . .]) Initialize the thread pool.
create_monitoring_info(status) Create a monitoring message for each block based

on the poll status.
handle_errors(error_handler, status) This method is called by the error management in-

frastructure after a status poll.
monitor_resources() Should resource monitoring happen for tasks on run-

ning on this executor?
scale_in(blocks) Scale in the number of active blocks by specified

amount.
scale_out([blocks]) Scales out the number of active workers by 1.
set_bad_state_and_fail_all(exception) Allows external error handlers to mark this executor

as irrecoverably bad and cause all tasks submitted to
it now and in the future to fail.

shutdown() Shutdown method, to kill the threads and workers.
start() Start the executor.
status() Return the status of all jobs/blocks currently known

to this executor.
submit(func, *args, **kwargs) Submits work to the the outgoing_q.
weakref_cb([q]) We do not use this yet.

Attributes

bad_state_is_set Returns true if this executor is in an irrecoverable er-
ror state.

error_management_enabled Indicates whether worker error management is sup-
ported by this executor.

executor_exception Returns an exception that indicates why this executor
is in an irrecoverable state.

hub_address Address to the Hub for monitoring.
hub_port Port to the Hub for monitoring.
provider
run_dir Path to the run directory.
scaling_enabled Specify if scaling is enabled.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.
tasks Contains a dictionary mapping task IDs to the corre-

sponding Future objects for all tasks that have been
submitted to this executor.

5.5. Executors 133

Parsl Documentation, Release 1.1.0

5.6 Launchers

parsl.launchers.SimpleLauncher Does no wrapping.
parsl.launchers.SingleNodeLauncher Worker launcher that wraps the user’s command with

the framework to launch multiple command invocations
in parallel.

parsl.launchers.SrunLauncher Worker launcher that wraps the user’s command with
the SRUN launch framework to launch multiple cmd in-
vocations in parallel on a single job allocation.

parsl.launchers.AprunLauncher Worker launcher that wraps the user’s command with
the Aprun launch framework to launch multiple cmd in-
vocations in parallel on a single job allocation

parsl.launchers.SrunMPILauncher Launches as many workers as MPI tasks to be executed
concurrently within a block.

parsl.launchers.GnuParallelLauncher Worker launcher that wraps the user’s command with
the framework to launch multiple command invocations
via GNU parallel sshlogin.

parsl.launchers.MpiExecLauncher Worker launcher that wraps the user’s command with
the framework to launch multiple command invocations
via mpiexec.

parsl.launchers.JsrunLauncher Worker launcher that wraps the user’s command with
the Jsrun launch framework to launch multiple cmd in-
vocations in parallel on a single job allocation

parsl.launchers.WrappedLauncher Wraps the command by prepending commands before a
user’s command

5.6.1 parsl.launchers.SimpleLauncher

class parsl.launchers.SimpleLauncher(debug: bool = True)
Does no wrapping. Just returns the command as-is

__init__(debug: bool = True)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([debug]) Initialize self.

5.6.2 parsl.launchers.SingleNodeLauncher

class parsl.launchers.SingleNodeLauncher(debug: bool = True, fail_on_any: bool = False)
Worker launcher that wraps the user’s command with the framework to launch multiple command invocations
in parallel. This wrapper sets the bash env variable CORES to the number of cores on the machine. By setting
task_blocks to an integer or to a bash expression the number of invocations of the command to be launched can
be controlled.

__init__(debug: bool = True, fail_on_any: bool = False)
Initialize self. See help(type(self)) for accurate signature.

134 Chapter 5. API Reference guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.1.0

Methods

__init__([debug, fail_on_any]) Initialize self.

5.6.3 parsl.launchers.SrunLauncher

class parsl.launchers.SrunLauncher(debug: bool = True, overrides: str = '')
Worker launcher that wraps the user’s command with the SRUN launch framework to launch multiple cmd
invocations in parallel on a single job allocation.

__init__(debug: bool = True, overrides: str = '')

Parameters overrides (str) – This string will be passed to the srun launcher. Default: ‘’

Methods

__init__([debug, overrides])
param overrides This string will be

passed to the srun launcher. Default:
‘’

5.6.4 parsl.launchers.AprunLauncher

class parsl.launchers.AprunLauncher(debug: bool = True, overrides: str = '')
Worker launcher that wraps the user’s command with the Aprun launch framework to launch multiple cmd
invocations in parallel on a single job allocation

__init__(debug: bool = True, overrides: str = '')

Parameters overrides (str) – This string will be passed to the aprun launcher. Default: ‘’

Methods

__init__([debug, overrides])
param overrides This string will be

passed to the aprun launcher. De-
fault: ‘’

5.6. Launchers 135

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

5.6.5 parsl.launchers.SrunMPILauncher

class parsl.launchers.SrunMPILauncher(debug: bool = True, overrides: str = '')
Launches as many workers as MPI tasks to be executed concurrently within a block.

Use this launcher instead of SrunLauncher if each block will execute multiple MPI applications at the same time.
Workers should be launched with independent Srun calls so as to setup the environment for MPI application
launch.

__init__(debug: bool = True, overrides: str = '')

Parameters overrides (str) – This string will be passed to the launcher. Default: ‘’

Methods

__init__([debug, overrides])
param overrides This string will be

passed to the launcher. Default: ‘’

5.6.6 parsl.launchers.GnuParallelLauncher

class parsl.launchers.GnuParallelLauncher(debug: bool = True)
Worker launcher that wraps the user’s command with the framework to launch multiple command invocations
via GNU parallel sshlogin.

This wrapper sets the bash env variable CORES to the number of cores on the machine.

This launcher makes the following assumptions:

• GNU parallel is installed and can be located in $PATH

• Paswordless SSH login is configured between the controller node and the target nodes.

• The provider makes available the $PBS_NODEFILE environment variable

__init__(debug: bool = True)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([debug]) Initialize self.

5.6.7 parsl.launchers.MpiExecLauncher

class parsl.launchers.MpiExecLauncher(debug: bool = True)
Worker launcher that wraps the user’s command with the framework to launch multiple command invocations
via mpiexec.

This wrapper sets the bash env variable CORES to the number of cores on the machine.

This launcher makes the following assumptions: - mpiexec is installed and can be located in $PATH - The
provider makes available the $PBS_NODEFILE environment variable

136 Chapter 5. API Reference guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.1.0

__init__(debug: bool = True)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([debug]) Initialize self.

5.6.8 parsl.launchers.JsrunLauncher

class parsl.launchers.JsrunLauncher(debug: bool = True, overrides: str = '')
Worker launcher that wraps the user’s command with the Jsrun launch framework to launch multiple cmd invo-
cations in parallel on a single job allocation

__init__(debug: bool = True, overrides: str = '')

Parameters overrides (str) – This string will be passed to the JSrun launcher. Default: ‘’

Methods

__init__([debug, overrides])
param overrides This string will be

passed to the JSrun launcher. De-
fault: ‘’

5.6.9 parsl.launchers.WrappedLauncher

class parsl.launchers.WrappedLauncher(prepend: str, debug: bool = True)
Wraps the command by prepending commands before a user’s command

As an example, the wrapped launcher can be used to launch a command inside a docker container by prepending
the proper docker invocation

__init__(prepend: str, debug: bool = True)

Parameters prepend (str) – Command to use before the launcher (e.g., time)

Methods

__init__(prepend[, debug])
param prepend Command to use before

the launcher (e.g., time)

5.6. Launchers 137

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

5.7 Providers

parsl.providers.AdHocProvider Ad-hoc execution provider
parsl.providers.AWSProvider A provider for using Amazon Elastic Compute Cloud

(EC2) resources.
parsl.providers.CobaltProvider Cobalt Execution Provider
parsl.providers.CondorProvider HTCondor Execution Provider.
parsl.providers.GoogleCloudProvider A provider for using resources from the Google Com-

pute Engine.
parsl.providers.GridEngineProvider A provider for the Grid Engine scheduler.
parsl.providers.LocalProvider Local Execution Provider
parsl.providers.LSFProvider LSF Execution Provider
parsl.providers.GridEngineProvider A provider for the Grid Engine scheduler.
parsl.providers.SlurmProvider Slurm Execution Provider
parsl.providers.TorqueProvider Torque Execution Provider
parsl.providers.KubernetesProvider Kubernetes execution provider
parsl.providers.PBSProProvider PBS Pro Execution Provider
parsl.providers.provider_base.
ExecutionProvider

Execution providers are responsible for managing exe-
cution resources that have a Local Resource Manager
(LRM).

parsl.providers.cluster_provider.
ClusterProvider

This class defines behavior common to all
cluster/supercompute-style scheduler systems.

5.7.1 parsl.providers.AdHocProvider

class parsl.providers.AdHocProvider(channels=[], worker_init='', cmd_timeout=30, paral-
lelism=1, move_files=None)

Ad-hoc execution provider

This provider is used to provision execution resources over one or more ad hoc nodes that are each accessible
over a Channel (say, ssh) but otherwise lack a cluster scheduler.

Parameters

• channels (list of Channel ojects) – Each channel represents a connection to a
remote node

• worker_init (str) – Command to be run before starting a worker, such as ‘module
load Anaconda; source activate env’. Since this provider calls the same worker_init across
all nodes in the ad-hoc cluster, it is recommended that a single script is made available across
nodes such as ~/setup.sh that can be invoked.

• cmd_timeout (int) – Duration for which the provider will wait for a command to be
invoked on a remote system. Defaults to 30s

• parallelism (float) – Determines the ratio of workers to tasks as managed by the
strategy component

__init__(channels=[], worker_init='', cmd_timeout=30, parallelism=1, move_files=None)
Initialize self. See help(type(self)) for accurate signature.

138 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Parsl Documentation, Release 1.1.0

Methods

__init__([channels, worker_init, . . .]) Initialize self.
cancel(job_ids) Cancel a list of jobs with job_ids
status(job_ids) Get status of the list of jobs with job_ids
submit(command, tasks_per_node[, job_name]) Submits the command onto a channel from the list of

channels

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
scaling_enabled
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.2 parsl.providers.AWSProvider

class parsl.providers.AWSProvider(image_id, key_name, init_blocks=1, min_blocks=0,
max_blocks=10, nodes_per_block=1, paral-
lelism=1, worker_init='', instance_type='t2.small',
region='us-east-2', spot_max_bid=0, key_file=None,
profile=None, iam_instance_profile_arn='',
state_file=None, walltime='01:00:00', linger=False,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False))

A provider for using Amazon Elastic Compute Cloud (EC2) resources.

One of 3 methods are required to authenticate: keyfile, profile or environment variables. If neither keyfile or
profile are set, the following environment variables must be set: AWS_ACCESS_KEY_ID (the access key for
your AWS account), AWS_SECRET_ACCESS_KEY (the secret key for your AWS account), and (optionaly) the
AWS_SESSION_TOKEN (the session key for your AWS account).

Parameters

• image_id (str) – Identification of the Amazon Machine Image (AMI).

• worker_init (str) – String to append to the Userdata script executed in the cloudinit
phase of instance initialization.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• key_file (str) – Path to json file that contains ‘AWSAccessKeyId’ and ‘AWSSe-
cretKey’.

• nodes_per_block (int) – This is always 1 for ec2. Nodes to provision per block.

• profile (str) – Profile to be used from the standard aws config file ~/.aws/config.

• nodes_per_block – Nodes to provision per block. Default is 1.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain. Default is 0.

5.7. Providers 139

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.1.0

• max_blocks (int) – Maximum number of blocks to maintain. Default is 10.

• instance_type (str) – EC2 instance type. Instance types comprise varying combina-
tions of CPU, memory, . storage, and networking capacity For more information on possible
instance types,. see here Default is ‘t2.small’.

• region (str) – Amazon Web Service (AWS) region to launch machines. Default is ‘us-
east-2’.

• key_name (str) – Name of the AWS private key (.pem file) that is usually generated on
the console to allow SSH access to the EC2 instances. This is mostly used for debugging.

• spot_max_bid (float) – Maximum bid price (if requesting spot market machines).

• iam_instance_profile_arn (str) – Launch instance with a specific role.

• state_file (str) – Path to the state file from a previous run to re-use.

• walltime – Walltime requested per block in HH:MM:SS. This option is not currently
honored by this provider.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default), SrunLauncher, or AprunLauncher

• linger (Bool) – When set to True, the workers will not halt. The user is responsible
for shutting down the node.

__init__(image_id, key_name, init_blocks=1, min_blocks=0, max_blocks=10,
nodes_per_block=1, parallelism=1, worker_init='', instance_type='t2.small',
region='us-east-2', spot_max_bid=0, key_file=None, profile=None,
iam_instance_profile_arn='', state_file=None, walltime='01:00:00', linger=False,
launcher=SingleNodeLauncher(debug=True, fail_on_any=False))

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(image_id, key_name[, init_blocks, . . .]) Initialize self.
cancel(job_ids) Cancel the jobs specified by a list of job ids.
config_route_table(vpc, internet_gateway) Configure route table for Virtual Private Cloud

(VPC).
create_name_tag_spec(resource_type, name) Create a new tag specification for a resource name.
create_session() Create a session.
create_vpc() Create and configure VPC
generate_aws_id() Generate a new ID for AWS resources.
get_instance_state([instances]) Get states of all instances on EC2 which were started

by this file.
goodbye()
initialize_boto_client() Initialize the boto client.
read_state_file(state_file) Read the state file, if it exists.
security_group(vpc, name) Create and configure a new security group.
show_summary() Print human readable summary of current AWS state

to log and to console.
shut_down_instance([instances]) Shut down a list of instances, if provided.
spin_up_instance(command, job_name) Start an instance in the VPC in the first available sub-

net.
status(job_ids) Get the status of a list of jobs identified by their ids.

continues on next page

140 Chapter 5. API Reference guide

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://aws.amazon.com/ec2/instance-types/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

Table 62 – continued from previous page
submit([command, tasks_per_node, job_name]) Submit the command onto a freshly instantiated

AWS EC2 instance.
teardown() Teardown the EC2 infastructure.
write_state_file() Save information that must persist to a file.
xstr(s)

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.3 parsl.providers.CobaltProvider

class parsl.providers.CobaltProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block=1, init_blocks=0, min_blocks=0,
max_blocks=1, parallelism=1, walltime='00:10:00',
account=None, queue=None, scheduler_options='',
worker_init='', launcher=AprunLauncher(debug=True,
overrides=''), cmd_timeout=10)

Cobalt Execution Provider

This provider uses cobalt to submit (qsub), obtain the status of (qstat), and cancel (qdel) jobs. Theo script to be
used is created from a template file in this same module.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• account (str) – Account that the job will be charged against.

• queue (str) – Torque queue to request blocks from.

• scheduler_options (str) – String to prepend to the submit script to the scheduler.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
AprunLauncher (the default) or, SingleNodeLauncher

5.7. Providers 141

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

__init__(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block=1, init_blocks=0, min_blocks=0, max_blocks=1, parallelism=1, wall-
time='00:10:00', account=None, queue=None, scheduler_options='', worker_init='',
launcher=AprunLauncher(debug=True, overrides=''), cmd_timeout=10)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([channel, nodes_per_block, . . .]) Initialize self.
cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) Submits the command onto an Local Resource Man-

ager job of parallel elements.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.4 parsl.providers.CondorProvider

class parsl.providers.CondorProvider(channel: parsl.channels.base.Channel = Lo-
calChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block: int = 1, cores_per_slot: Op-
tional[int] = None, mem_per_slot: Optional[float]
= None, init_blocks: int = 1, min_blocks: int
= 0, max_blocks: int = 1, parallelism: float =
1, environment: Optional[Dict[str, str]] = None,
project: str = '', scheduler_options: str = '',
transfer_input_files: List[str] = [], walltime: str
= '00:10:00', worker_init: str = '', launcher:
parsl.launchers.launchers.Launcher = SingleNode-
Launcher(debug=True, fail_on_any=False), require-
ments: str = '', cmd_timeout: int = 60)

HTCondor Execution Provider.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block.

• cores_per_slot (int) – Specify the number of cores to provision per slot. If set to
None, executors will assume all cores on the node are available for computation. Default is

142 Chapter 5. API Reference guide

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.1.0

None.

• mem_per_slot (float) – Specify the real memory to provision per slot in GB. If set to
None, no explicit request to the scheduler will be made. Default is None.

• init_blocks (int) – Number of blocks to provision at time of initialization

• min_blocks (int) – Minimum number of blocks to maintain

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

• environment (dict of str) – A dictionary of environmant variable name and value
pairs which will be set before running a task.

• project (str) – Project which the job will be charged against

• scheduler_options (str) – String to add specific condor attributes to the HTCondor
submit script.

• transfer_input_files (list(str)) – List of strings of paths to additional files or
directories to transfer to the job

• worker_init (str) – Command to be run before starting a worker.

• requirements (str) – Condor requirements.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default),

• cmd_timeout (int) – Timeout for commands made to the scheduler in seconds

__init__(channel: parsl.channels.base.Channel = LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block: int = 1, cores_per_slot: Optional[int] = None, mem_per_slot: Op-
tional[float] = None, init_blocks: int = 1, min_blocks: int = 0, max_blocks: int = 1,
parallelism: float = 1, environment: Optional[Dict[str, str]] = None, project: str = '',
scheduler_options: str = '', transfer_input_files: List[str] = [], walltime: str = '00:10:00',
worker_init: str = '', launcher: parsl.launchers.launchers.Launcher = SingleNode-
Launcher(debug=True, fail_on_any=False), requirements: str = '', cmd_timeout: int = 60)
→ None

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([channel, nodes_per_block, . . .]) Initialize self.
cancel(job_ids) Cancels the jobs specified by a list of job IDs.
execute_wait(cmd[, timeout])
status(job_ids) Get the status of a list of jobs identified by their ids.
submit(command, tasks_per_node[, job_name]) Submits the command onto an Local Resource Man-

ager job.

5.7. Providers 143

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.1.0

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.5 parsl.providers.GoogleCloudProvider

class parsl.providers.GoogleCloudProvider(project_id, key_file, region, os_project,
os_family, google_version='v1',
instance_type='n1-standard-1', init_blocks=1,
min_blocks=0, max_blocks=10,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), parallelism=1)

A provider for using resources from the Google Compute Engine.

Parameters

• project_id (str) – Project ID from Google compute engine.

• key_file (str) – Path to authorization private key json file. This is required for auth. A
new one can be generated here: https://console.cloud.google.com/apis/credentials

• region (str) – Region in which to start instances

• os_project (str) – OS project code for Google compute engine.

• os_family (str) – OS family to request.

• google_version (str) – Google compute engine version to use. Possibilies include
‘v1’ (default) or ‘beta’.

• instance_type (str) – ‘n1-standard-1’,

• init_blocks (int) – Number of blocks to provision immediately. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain. Default is 0.

• max_blocks (int) – Maximum number of blocks to maintain. Default is 10.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

__init__(project_id, key_file, region, os_project, os_family, google_version='v1',
instance_type='n1-standard-1', init_blocks=1, min_blocks=0, max_blocks=10,
launcher=SingleNodeLauncher(debug=True, fail_on_any=False), parallelism=1)

Initialize self. See help(type(self)) for accurate signature.

144 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://console.cloud.google.com/apis/credentials
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Parsl Documentation, Release 1.1.0

Methods

__init__(project_id, key_file, region, . . .) Initialize self.
bye()
cancel(job_ids) Cancels the resources identified by the job_ids pro-

vided by the user.
create_instance([command])
delete_instance(name)
get_zone(region)
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) The submit method takes the command string to be

executed upon instantiation of a resource most often
to start a pilot.

Attributes

status_polling_interval

5.7.6 parsl.providers.GridEngineProvider

class parsl.providers.GridEngineProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block=1, init_blocks=1,
min_blocks=0, max_blocks=1, par-
allelism=1, walltime='00:10:00',
scheduler_options='', worker_init='',
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), cmd_timeout: int = 60,
queue=None)

A provider for the Grid Engine scheduler.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• scheduler_options (str) – String to prepend to the #$$ blocks in the submit script
to the scheduler.

5.7. Providers 145

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default),

• cmd_timeout (int) – Timeout for commands made to the scheduler in seconds

__init__(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block=1, init_blocks=1, min_blocks=0, max_blocks=1, par-
allelism=1, walltime='00:10:00', scheduler_options='', worker_init='',
launcher=SingleNodeLauncher(debug=True, fail_on_any=False), cmd_timeout: int =
60, queue=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([channel, nodes_per_block, . . .]) Initialize self.
cancel(job_ids) Cancels the resources identified by the job_ids pro-

vided by the user.
execute_wait(cmd[, timeout])
get_configs(command, tasks_per_node) Compose a dictionary with information for writing

the submit script.
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) The submit method takes the command string to be

executed upon instantiation of a resource most often
to start a pilot (such as IPP engine or even Swift-T
engines).

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.7 parsl.providers.LocalProvider

class parsl.providers.LocalProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), init_blocks=1, min_blocks=0,
max_blocks=1, walltime='00:15:00', worker_init='',
cmd_timeout=30, parallelism=1, move_files=None)

Local Execution Provider

This provider is used to provide execution resources from the localhost.

Parameters

146 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.1.0

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

• move_files (Optional[Bool]: should files be moved? by
default, Parsl will try to figure) – this out itself (= None). If True,
then will always move. If False, will never move.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

__init__(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block=1, launcher=SingleNodeLauncher(debug=True, fail_on_any=False),
init_blocks=1, min_blocks=0, max_blocks=1, walltime='00:15:00', worker_init='',
cmd_timeout=30, parallelism=1, move_files=None)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([channel, nodes_per_block, . . .]) Initialize self.
cancel(job_ids) Cancels the jobs specified by a list of job ids
status(job_ids) Get the status of a list of jobs identified by their ids.
submit(command, tasks_per_node[, job_name]) Submits the command onto an Local Resource Man-

ager job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.8 parsl.providers.LSFProvider

class parsl.providers.LSFProvider(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block=1, init_blocks=1, min_blocks=0,
max_blocks=1, parallelism=1, wall-
time='00:10:00', scheduler_options='', worker_init='',
project=None, cmd_timeout=120, move_files=True,
launcher=SingleNodeLauncher(debug=True,
fail_on_any=False))

LSF Execution Provider

This provider uses sbatch to submit, squeue for status and scancel to cancel jobs. The sbatch script to be used is
created from a template file in this same module.

5.7. Providers 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block.

• init_blocks (int) – Number of blocks to request at the start of the run.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• project (str) – Project to which the resources must be charged

• scheduler_options (str) – String to prepend to the #SBATCH blocks in the submit
script to the scheduler.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• cmd_timeout (int) – Seconds after which requests to the scheduler will timeout. De-
fault: 120s

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default), SrunLauncher, or AprunLauncher

• move_files (Optional[Bool]: should files be moved? by
default, Parsl will try to move files.) –

__init__(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block=1, init_blocks=1, min_blocks=0, max_blocks=1, parallelism=1, wall-
time='00:10:00', scheduler_options='', worker_init='', project=None, cmd_timeout=120,
move_files=True, launcher=SingleNodeLauncher(debug=True, fail_on_any=False))

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([channel, nodes_per_block, . . .]) Initialize self.
cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) Submit the command as an LSF job.

148 Chapter 5. API Reference guide

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.1.0

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.9 parsl.providers.SlurmProvider

class parsl.providers.SlurmProvider(partition: Optional[str], account: Optional[str]
= None, channel: parsl.channels.base.Channel
= LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block: int = 1, cores_per_node: Op-
tional[int] = None, mem_per_node: Optional[int]
= None, init_blocks: int = 1, min_blocks: int = 0,
max_blocks: int = 1, parallelism: float = 1, wall-
time: str = '00:10:00', scheduler_options: str = '',
worker_init: str = '', cmd_timeout: int = 10, exclu-
sive: bool = True, move_files: bool = True, launcher:
parsl.launchers.launchers.Launcher = SingleNode-
Launcher(debug=True, fail_on_any=False))

Slurm Execution Provider

This provider uses sbatch to submit, squeue for status and scancel to cancel jobs. The sbatch script to be used is
created from a template file in this same module.

Parameters

• partition (str) – Slurm partition to request blocks from. If none, no partition slurm
directive will be specified.

• account (str) – Slurm account to which to charge resources used by the job. If none, the
job will use the user’s default account.

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• nodes_per_block (int) – Nodes to provision per block.

• cores_per_node (int) – Specify the number of cores to provision per node. If set to
None, executors will assume all cores on the node are available for computation. Default is
None.

• mem_per_node (int) – Specify the real memory to provision per node in GB. If set to
None, no explicit request to the scheduler will be made. Default is None.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

5.7. Providers 149

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

• scheduler_options (str) – String to prepend to the #SBATCH blocks in the submit
script to the scheduler.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• exclusive (bool (Default = True)) – Requests nodes which are not shared with
other running jobs.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
SingleNodeLauncher (the default), SrunLauncher, or AprunLauncher

• move_files (Optional[Bool]: should files be moved? by
default, Parsl will try to move files.) –

__init__(partition: Optional[str], account: Optional[str] = None, channel:
parsl.channels.base.Channel = LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
nodes_per_block: int = 1, cores_per_node: Optional[int] = None, mem_per_node:
Optional[int] = None, init_blocks: int = 1, min_blocks: int = 0, max_blocks: int
= 1, parallelism: float = 1, walltime: str = '00:10:00', scheduler_options: str = '',
worker_init: str = '', cmd_timeout: int = 10, exclusive: bool = True, move_files: bool =
True, launcher: parsl.launchers.launchers.Launcher = SingleNodeLauncher(debug=True,
fail_on_any=False))

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(partition[, account, channel, . . .]) Initialize self.
cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) Submit the command as a slurm job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

150 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Parsl Documentation, Release 1.1.0

5.7.10 parsl.providers.TorqueProvider

class parsl.providers.TorqueProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
account=None, queue=None, scheduler_options='',
worker_init='', nodes_per_block=1, init_blocks=1,
min_blocks=0, max_blocks=1, parallelism=1,
launcher=AprunLauncher(debug=True, overrides=''),
walltime='00:20:00', cmd_timeout=120)

Torque Execution Provider

This provider uses sbatch to submit, squeue for status, and scancel to cancel jobs. The sbatch script to be used
is created from a template file in this same module.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• account (str) – Account the job will be charged against.

• queue (str) – Torque queue to request blocks from.

• nodes_per_block (int) – Nodes to provision per block.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain. Default is 0.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• scheduler_options (str) – String to prepend to the #PBS blocks in the submit script
to the scheduler. WARNING: scheduler_options should only be given #PBS strings, and
should not have trailing newlines.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• launcher (Launcher) – Launcher for this provider. Possible launchers include
AprunLauncher (the default), or SingleNodeLauncher,

__init__(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
account=None, queue=None, scheduler_options='', worker_init='',
nodes_per_block=1, init_blocks=1, min_blocks=0, max_blocks=1, parallelism=1,
launcher=AprunLauncher(debug=True, overrides=''), walltime='00:20:00',
cmd_timeout=120)

Initialize self. See help(type(self)) for accurate signature.

5.7. Providers 151

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

Methods

__init__([channel, account, queue, . . .]) Initialize self.
cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) Submits the command onto an Local Resource Man-

ager job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.11 parsl.providers.KubernetesProvider

class parsl.providers.KubernetesProvider(image: str, namespace: str = 'default',
nodes_per_block: int = 1, init_blocks: int =
4, min_blocks: int = 0, max_blocks: int =
10, max_cpu: float = 2, max_mem: str =
'500Mi', init_cpu: float = 1, init_mem: str =
'250Mi', parallelism: float = 1, worker_init: str
= '', pod_name: Optional[str] = None, user_id:
Optional[str] = None, group_id: Optional[str]
= None, run_as_non_root: bool = False, se-
cret: Optional[str] = None, persistent_volumes:
List[Tuple[str, str]] = [])

Kubernetes execution provider

Parameters

• namespace (str) – Kubernetes namespace to create deployments.

• image (str) – Docker image to use in the deployment.

• nodes_per_block (int) – Nodes to provision per block.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain.

• max_blocks (int) – Maximum number of blocks to maintain.

• max_cpu (float) – CPU limits of the blocks (pods), in cpu units. This is the cpu “limits”
option for resource specification. Check kubernetes docs for more details. Default is 2.

• max_mem (str) – Memory limits of the blocks (pods), in Mi or Gi. This is the memory
“limits” option for resource specification on kubernetes. Check kubernetes docs for more
details. Default is 500Mi.

152 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

• init_cpu (float) – CPU limits of the blocks (pods), in cpu units. This is the cpu “re-
quests” option for resource specification. Check kubernetes docs for more details. Default
is 1.

• init_mem (str) – Memory limits of the blocks (pods), in Mi or Gi. This is the memory
“requests” option for resource specification on kubernetes. Check kubernetes docs for more
details. Default is 250Mi.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

• worker_init (str) – Command to be run first for the workers, such as python
start.py.

• secret (str) – Docker secret to use to pull images

• pod_name (str) – The name for the pod, will be appended with a timestamp. Default is
None, meaning parsl automatically names the pod.

• user_id (str) – Unix user id to run the container as.

• group_id (str) – Unix group id to run the container as.

• run_as_non_root (bool) – Run as non-root (True) or run as root (False).

• persistent_volumes (list[(str, str)]) – List of tuples describing persistent
volumes to be mounted in the pod. The tuples consist of (PVC Name, Mount Directory).

__init__(image: str, namespace: str = 'default', nodes_per_block: int = 1, init_blocks: int = 4,
min_blocks: int = 0, max_blocks: int = 10, max_cpu: float = 2, max_mem: str = '500Mi',
init_cpu: float = 1, init_mem: str = '250Mi', parallelism: float = 1, worker_init: str = '',
pod_name: Optional[str] = None, user_id: Optional[str] = None, group_id: Optional[str]
= None, run_as_non_root: bool = False, secret: Optional[str] = None, persistent_volumes:
List[Tuple[str, str]] = [])→ None

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(image[, namespace, . . .]) Initialize self.
cancel(job_ids) Cancels the jobs specified by a list of job ids Args:

job_ids : [<job_id> . . .] Returns : [True/False. . .]
: If the cancel operation fails the entire list will be
False.

status(job_ids) Get the status of a list of jobs identified by the job
identifiers returned from the submit request.

submit(cmd_string, tasks_per_node[, job_name]) Submit a job :param - cmd_string: (String) - Name
of the container to initiate :param - tasks_per_node:
command invocations to be launched per node :type
- tasks_per_node: int

5.7. Providers 153

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Parsl Documentation, Release 1.1.0

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.12 parsl.providers.PBSProProvider

class parsl.providers.PBSProProvider(channel=LocalChannel(envs={},
script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
account=None, queue=None, scheduler_options='',
worker_init='', nodes_per_block=1, cpus_per_node=1,
init_blocks=1, min_blocks=0, max_blocks=1, paral-
lelism=1, launcher=SingleNodeLauncher(debug=True,
fail_on_any=False), walltime='00:20:00',
cmd_timeout=120)

PBS Pro Execution Provider

This provider uses sbatch to submit, squeue for status, and scancel to cancel jobs. The sbatch script to be used
is created from a template file in this same module.

Parameters

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• account (str) – Account the job will be charged against.

• queue (str) – Queue to request blocks from.

• nodes_per_block (int) – Nodes to provision per block.

• cpus_per_node (int) – CPUs to provision per node.

• init_blocks (int) – Number of blocks to provision at the start of the run. Default is 1.

• min_blocks (int) – Minimum number of blocks to maintain. Default is 0.

• max_blocks (int) – Maximum number of blocks to maintain.

• parallelism (float) – Ratio of provisioned task slots to active tasks. A parallelism
value of 1 represents aggressive scaling where as many resources as possible are used; par-
allelism close to 0 represents the opposite situation in which as few resources as possible
(i.e., min_blocks) are used.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• scheduler_options (str) – String to prepend to the #PBS blocks in the submit script
to the scheduler.

• worker_init (str) – Command to be run before starting a worker, such as ‘module load
Anaconda; source activate env’.

• launcher (Launcher) – Launcher for this provider. The default is
SingleNodeLauncher.

154 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

__init__(channel=LocalChannel(envs={}, script_dir=None, user-
home='/home/docs/checkouts/readthedocs.org/user_builds/parsl/checkouts/1.1.0/docs'),
account=None, queue=None, scheduler_options='', worker_init='', nodes_per_block=1,
cpus_per_node=1, init_blocks=1, min_blocks=0, max_blocks=1, parallelism=1,
launcher=SingleNodeLauncher(debug=True, fail_on_any=False), walltime='00:20:00',
cmd_timeout=120)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([channel, account, queue, . . .]) Initialize self.
cancel(job_ids) Cancels the jobs specified by a list of job ids
execute_wait(cmd[, timeout])
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) Submits the command job.

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.13 parsl.providers.provider_base.ExecutionProvider

class parsl.providers.provider_base.ExecutionProvider
Execution providers are responsible for managing execution resources that have a Local Resource Manager
(LRM). For instance, campus clusters and supercomputers generally have LRMs (schedulers) such as Slurm,
Torque/PBS, Condor and Cobalt. Clouds, on the other hand, have API interfaces that allow much more fine-
grained composition of an execution environment. An execution provider abstracts these types of resources and
provides a single uniform interface to them.

The providers abstract away the interfaces provided by various systems to request, monitor, and cancel compute
resources.

+------------------
|

script_string ------->| submit
id <--------|---+

|
[ids] ------->| status
[statuses] <--------|----+

|
[ids] ------->| cancel
[cancel] <--------|----+

|
+-------------------

__init__()

5.7. Providers 155

Parsl Documentation, Release 1.1.0

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__() Initialize self.
cancel(job_ids) Cancels the resources identified by the job_ids pro-

vided by the user.
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) The submit method takes the command string to be

executed upon instantiation of a resource most often
to start a pilot (such as IPP engine or even Swift-T
engines).

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.7.14 parsl.providers.cluster_provider.ClusterProvider

class parsl.providers.cluster_provider.ClusterProvider(label, channel,
nodes_per_block,
init_blocks, min_blocks,
max_blocks, paral-
lelism, walltime, launcher,
cmd_timeout=10)

This class defines behavior common to all cluster/supercompute-style scheduler systems.

Parameters

• label (str) – Label for this provider.

• channel (Channel) – Channel for accessing this provider. Possible channels include
LocalChannel (the default), SSHChannel, or SSHInteractiveLoginChannel.

• walltime (str) – Walltime requested per block in HH:MM:SS.

• launcher (str) – FIXME

• cmd_timeout (int) – Timeout for commands made to the scheduler in seconds

+------------------
|

script_string ------->| submit
id <--------|---+

|
[ids] ------->| status
[statuses] <--------|----+

|
(continues on next page)

156 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Parsl Documentation, Release 1.1.0

(continued from previous page)

[ids] ------->| cancel
[cancel] <--------|----+

|
+-------------------

__init__(label, channel, nodes_per_block, init_blocks, min_blocks, max_blocks, parallelism, wall-
time, launcher, cmd_timeout=10)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(label, channel, nodes_per_block, . . .) Initialize self.
cancel(job_ids) Cancels the resources identified by the job_ids pro-

vided by the user.
execute_wait(cmd[, timeout])
status(job_ids) Get the status of a list of jobs identified by the job

identifiers returned from the submit request.
submit(command, tasks_per_node[, job_name]) The submit method takes the command string to be

executed upon instantiation of a resource most often
to start a pilot (such as IPP engine or even Swift-T
engines).

Attributes

cores_per_node Number of cores to provision per node.
label Provides the label for this provider
mem_per_node Real memory to provision per node in GB.
status_polling_interval Returns the interval, in seconds, at which the status

method should be called.

5.8 Exceptions

parsl.app.errors.AppBadFormatting An error raised during formatting of a bash function.
parsl.app.errors.AppException An error raised during execution of an app.
parsl.app.errors.AppTimeout An error raised during execution of an app when it ex-

ceeds its allotted walltime.
parsl.app.errors.BadStdStreamFile Error raised due to bad filepaths specified for STDOUT/

STDERR.
parsl.app.errors.BashAppNoReturn Bash app returned no string.
parsl.app.errors.BashExitFailure A non-zero exit code returned from a @bash_app
parsl.app.errors.MissingOutputs Error raised at the end of app execution due to missing

output files.
parsl.app.errors.NotFutureError A non future item was passed to a function that expected

a future.
parsl.app.errors.ParslError Base class for all exceptions.

continues on next page

5.8. Exceptions 157

Parsl Documentation, Release 1.1.0

Table 88 – continued from previous page
parsl.errors.OptionalModuleMissing Error raised when a required module is missing for a

optional/extra component
parsl.executors.errors.ExecutorError Base class for all exceptions.
parsl.executors.errors.ScalingFailed Scaling failed due to error in Execution provider.
parsl.executors.errors.
SerializationError

Failure to serialize data arguments for the tasks

parsl.executors.errors.
DeserializationError

Failure at the Deserialization of results/exceptions from
remote workers

parsl.executors.errors.BadMessage Mangled/Poorly formatted/Unsupported message re-
ceived

parsl.dataflow.error.
DataFlowException

Base class for all exceptions.

parsl.dataflow.error.
ConfigurationError

Raised when the DataFlowKernel receives an invalid
configuration.

parsl.dataflow.error.
DuplicateTaskError

Raised by the DataFlowKernel when it finds that a job
with the same task-id has been launched before.

parsl.dataflow.error.BadCheckpoint Error raised at the end of app execution due to missing
output files.

parsl.dataflow.error.DependencyError Error raised if an app cannot run because there was an
error

parsl.launchers.error.BadLauncher Error raised when a non callable object is provider as
Launcher

parsl.providers.error.
ExecutionProviderException

Base class for all exceptions Only to be invoked when
only a more specific error is not available.

parsl.providers.error.
ChannelRequired

Execution provider requires a channel.

parsl.providers.error.ScaleOutFailed Generic catch.
parsl.providers.error.
SchedulerMissingArgs

Error raised when the template used to compose the sub-
mit script to the local resource manager is missing re-
quired arguments

parsl.providers.error.
ScriptPathError

Error raised when the template used to compose the sub-
mit script to the local resource manager is missing re-
quired arguments

parsl.channels.errors.ChannelError Base class for all exceptions
parsl.channels.errors.
BadHostKeyException

SSH channel could not be created since server’s host
keys could not be verified

parsl.channels.errors.BadScriptPath An error raised during execution of an app.
parsl.channels.errors.
BadPermsScriptPath

User does not have permissions to access the script_dir
on the remote site

parsl.channels.errors.FileExists Push or pull of file over channel fails since a file of the
name already exists on the destination.

parsl.channels.errors.AuthException An error raised during execution of an app.
parsl.channels.errors.SSHException if there was any other error connecting or establishing

an SSH session
parsl.channels.errors.
FileCopyException

File copy operation failed

parsl.executors.high_throughput.
errors.WorkerLost

Exception raised when a worker is lost

158 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

5.8.1 parsl.app.errors.AppBadFormatting

exception parsl.app.errors.AppBadFormatting
An error raised during formatting of a bash function.

5.8.2 parsl.app.errors.AppException

exception parsl.app.errors.AppException
An error raised during execution of an app.

What this exception contains depends entirely on context

5.8.3 parsl.app.errors.AppTimeout

exception parsl.app.errors.AppTimeout
An error raised during execution of an app when it exceeds its allotted walltime.

5.8.4 parsl.app.errors.BadStdStreamFile

exception parsl.app.errors.BadStdStreamFile(reason: str, exception: Exception)
Error raised due to bad filepaths specified for STDOUT/ STDERR.

Contains: reason(string) outputs(List of strings/files..) exception object

5.8.5 parsl.app.errors.BashAppNoReturn

exception parsl.app.errors.BashAppNoReturn(reason: str)
Bash app returned no string.

Contains: reason(string)

5.8.6 parsl.app.errors.BashExitFailure

exception parsl.app.errors.BashExitFailure(reason: str, exitcode: int)
A non-zero exit code returned from a @bash_app

Contains: reason(str) exitcode(int)

5.8.7 parsl.app.errors.MissingOutputs

exception parsl.app.errors.MissingOutputs(reason: str, outputs: List[Union[str,
parsl.data_provider.files.File]])

Error raised at the end of app execution due to missing output files.

Contains: reason(string) outputs(List of strings/files..)

5.8. Exceptions 159

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

5.8.8 parsl.app.errors.NotFutureError

exception parsl.app.errors.NotFutureError
A non future item was passed to a function that expected a future.

This is basically a type error.

5.8.9 parsl.app.errors.ParslError

exception parsl.app.errors.ParslError
Base class for all exceptions.

Only to be invoked when a more specific error is not available.

5.8.10 parsl.errors.OptionalModuleMissing

exception parsl.errors.OptionalModuleMissing(module_names, reason)
Error raised when a required module is missing for a optional/extra component

5.8.11 parsl.executors.errors.ExecutorError

exception parsl.executors.errors.ExecutorError(executor, reason)
Base class for all exceptions.

Only to be invoked when only a more specific error is not available.

5.8.12 parsl.executors.errors.ScalingFailed

exception parsl.executors.errors.ScalingFailed(executor: Optional[str], reason: str)
Scaling failed due to error in Execution provider.

5.8.13 parsl.executors.errors.SerializationError

exception parsl.executors.errors.SerializationError(fname)
Failure to serialize data arguments for the tasks

5.8.14 parsl.executors.errors.DeserializationError

exception parsl.executors.errors.DeserializationError(reason)
Failure at the Deserialization of results/exceptions from remote workers

160 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

5.8.15 parsl.executors.errors.BadMessage

exception parsl.executors.errors.BadMessage(reason)
Mangled/Poorly formatted/Unsupported message received

5.8.16 parsl.dataflow.error.DataFlowException

exception parsl.dataflow.error.DataFlowException
Base class for all exceptions.

Only to be invoked when only a more specific error is not available.

5.8.17 parsl.dataflow.error.ConfigurationError

exception parsl.dataflow.error.ConfigurationError
Raised when the DataFlowKernel receives an invalid configuration.

5.8.18 parsl.dataflow.error.DuplicateTaskError

exception parsl.dataflow.error.DuplicateTaskError
Raised by the DataFlowKernel when it finds that a job with the same task-id has been launched before.

5.8.19 parsl.dataflow.error.BadCheckpoint

exception parsl.dataflow.error.BadCheckpoint(reason)
Error raised at the end of app execution due to missing output files.

Parameters reason (-) –

Contains: reason (string) dependent_exceptions

5.8.20 parsl.dataflow.error.DependencyError

exception parsl.dataflow.error.DependencyError(dependent_exceptions_tids, task_id)

Error raised if an app cannot run because there was an error in a dependency.

Parameters

• dependent_exceptions (-) – List of exceptions

• task_id (-) – Identity of the task failed task

Contains: reason (string) dependent_exceptions

5.8. Exceptions 161

Parsl Documentation, Release 1.1.0

5.8.21 parsl.launchers.error.BadLauncher

exception parsl.launchers.error.BadLauncher(launcher, reason)
Error raised when a non callable object is provider as Launcher

5.8.22 parsl.providers.error.ExecutionProviderException

exception parsl.providers.error.ExecutionProviderException
Base class for all exceptions Only to be invoked when only a more specific error is not available.

5.8.23 parsl.providers.error.ChannelRequired

exception parsl.providers.error.ChannelRequired(provider, reason)
Execution provider requires a channel.

5.8.24 parsl.providers.error.ScaleOutFailed

exception parsl.providers.error.ScaleOutFailed(provider, reason)
Generic catch. Scale out failed in the submit phase on the provider side

5.8.25 parsl.providers.error.SchedulerMissingArgs

exception parsl.providers.error.SchedulerMissingArgs(missing_keywords, sitename)
Error raised when the template used to compose the submit script to the local resource manager is missing
required arguments

5.8.26 parsl.providers.error.ScriptPathError

exception parsl.providers.error.ScriptPathError(script_path, reason)
Error raised when the template used to compose the submit script to the local resource manager is missing
required arguments

5.8.27 parsl.channels.errors.ChannelError

exception parsl.channels.errors.ChannelError(reason: str, e: Exception, hostname: str)
Base class for all exceptions

Only to be invoked when only a more specific error is not available.

162 Chapter 5. API Reference guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

5.8.28 parsl.channels.errors.BadHostKeyException

exception parsl.channels.errors.BadHostKeyException(e: Exception, hostname: str)
SSH channel could not be created since server’s host keys could not be verified

Contains: reason(string) e (paramiko exception object) hostname (string)

5.8.29 parsl.channels.errors.BadScriptPath

exception parsl.channels.errors.BadScriptPath(e: Exception, hostname: str)
An error raised during execution of an app. What this exception contains depends entirely on context Contains:
reason(string) e (paramiko exception object) hostname (string)

5.8.30 parsl.channels.errors.BadPermsScriptPath

exception parsl.channels.errors.BadPermsScriptPath(e: Exception, hostname: str)
User does not have permissions to access the script_dir on the remote site

Contains: reason(string) e (paramiko exception object) hostname (string)

5.8.31 parsl.channels.errors.FileExists

exception parsl.channels.errors.FileExists(e: Exception, hostname: str, filename: Op-
tional[str] = None)

Push or pull of file over channel fails since a file of the name already exists on the destination.

Contains: reason(string) e (paramiko exception object) hostname (string)

5.8.32 parsl.channels.errors.AuthException

exception parsl.channels.errors.AuthException(e: Exception, hostname: str)
An error raised during execution of an app. What this exception contains depends entirely on context Contains:
reason(string) e (paramiko exception object) hostname (string)

5.8.33 parsl.channels.errors.SSHException

exception parsl.channels.errors.SSHException(e: Exception, hostname: str)
if there was any other error connecting or establishing an SSH session

Contains: reason(string) e (paramiko exception object) hostname (string)

5.8.34 parsl.channels.errors.FileCopyException

exception parsl.channels.errors.FileCopyException(e: Exception, hostname: str)
File copy operation failed

Contains: reason(string) e (paramiko exception object) hostname (string)

5.8. Exceptions 163

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Parsl Documentation, Release 1.1.0

5.8.35 parsl.executors.high_throughput.errors.WorkerLost

exception parsl.executors.high_throughput.errors.WorkerLost(worker_id, host-
name)

Exception raised when a worker is lost

5.9 Internal

parsl.app.app.AppBase This is the base class that defines the two external facing
functions that an App must define.

parsl.app.bash.BashApp
parsl.app.python.PythonApp Extends AppBase to cover the Python App.
parsl.dataflow.dflow.DataFlowKernel The DataFlowKernel adds dependency awareness to an

existing executor.
parsl.dataflow.flow_control.
FlowControl

Implements threshold-interval based flow control.

parsl.dataflow.memoization.Memoizer Memoizer is responsible for ensuring that identical
work is not repeated.

parsl.dataflow.strategy.Strategy FlowControl strategy.
parsl.dataflow.flow_control.Timer This timer is a simplified version of the FlowControl

timer.

5.9.1 parsl.app.app.AppBase

class parsl.app.app.AppBase(func, data_flow_kernel=None, executors='all', cache=False, ig-
nore_for_cache=None)

This is the base class that defines the two external facing functions that an App must define.

The __init__ () which is called when the interpreter sees the definition of the decorated function, and the __call__
() which is invoked when a decorated function is called by the user.

__init__(func, data_flow_kernel=None, executors='all', cache=False, ignore_for_cache=None)
Construct the App object.

Parameters func (-) – Takes the function to be made into an App

Kwargs:

• data_flow_kernel (DataFlowKernel): The DataFlowKernel responsible for manag-
ing this app. This can be omitted only after calling parsl.dataflow.dflow.
DataFlowKernelLoader.load().

• executors (str|list) : Labels of the executors that this app can execute over. Default is ‘all’.

• cache (Bool) : Enable caching of this app ?

Returns

• App object.

164 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Methods

__init__(func[, data_flow_kernel, . . .]) Construct the App object.

5.9.2 parsl.app.bash.BashApp

class parsl.app.bash.BashApp(func, data_flow_kernel=None, cache=False, executors='all', ig-
nore_for_cache=None)

__init__(func, data_flow_kernel=None, cache=False, executors='all', ignore_for_cache=None)
Construct the App object.

Parameters func (-) – Takes the function to be made into an App

Kwargs:

• data_flow_kernel (DataFlowKernel): The DataFlowKernel responsible for manag-
ing this app. This can be omitted only after calling parsl.dataflow.dflow.
DataFlowKernelLoader.load().

• executors (str|list) : Labels of the executors that this app can execute over. Default is ‘all’.

• cache (Bool) : Enable caching of this app ?

Returns

• App object.

Methods

__init__(func[, data_flow_kernel, cache, . . .]) Construct the App object.

5.9.3 parsl.app.python.PythonApp

class parsl.app.python.PythonApp(func, data_flow_kernel=None, cache=False, executors='all',
ignore_for_cache=[], join=False)

Extends AppBase to cover the Python App.

__init__(func, data_flow_kernel=None, cache=False, executors='all', ignore_for_cache=[],
join=False)

Construct the App object.

Parameters func (-) – Takes the function to be made into an App

Kwargs:

• data_flow_kernel (DataFlowKernel): The DataFlowKernel responsible for manag-
ing this app. This can be omitted only after calling parsl.dataflow.dflow.
DataFlowKernelLoader.load().

• executors (str|list) : Labels of the executors that this app can execute over. Default is ‘all’.

• cache (Bool) : Enable caching of this app ?

Returns

5.9. Internal 165

Parsl Documentation, Release 1.1.0

• App object.

Methods

__init__(func[, data_flow_kernel, cache, . . .]) Construct the App object.

5.9.4 parsl.dataflow.dflow.DataFlowKernel

class parsl.dataflow.dflow.DataFlowKernel(config=Config(app_cache=True, check-
point_files=None, checkpoint_mode=None,
checkpoint_period=None, execu-
tors=[ThreadPoolExecutor(label='threads',
managed=True, max_threads=2, stor-
age_access=None, thread_name_prefix='',
working_dir=None)], garbage_collect=True,
initialize_logging=True, in-
ternal_tasks_max_threads=10,
max_idletime=120.0, monitoring=None,
retries=0, run_dir='runinfo', strategy='simple',
usage_tracking=False))

The DataFlowKernel adds dependency awareness to an existing executor.

It is responsible for managing futures, such that when dependencies are resolved, pending tasks move to the
runnable state.

Here is a simplified diagram of what happens internally:

User | DFK | Executor
--

| |
Task-------+> +Submit |

App_Fu<------+--| |
| Dependencies met |
| task-------+--> +Submit
| Ex_Fu<------+----|

__init__(config=Config(app_cache=True, checkpoint_files=None, checkpoint_mode=None, check-
point_period=None, executors=[ThreadPoolExecutor(label='threads', managed=True,
max_threads=2, storage_access=None, thread_name_prefix='', working_dir=None)],
garbage_collect=True, initialize_logging=True, internal_tasks_max_threads=10,
max_idletime=120.0, monitoring=None, retries=0, run_dir='runinfo', strategy='simple',
usage_tracking=False))

Initialize the DataFlowKernel.

Parameters config (Config) – A specification of all configuration options. For more details
see the :class:~`parsl.config.Config` documentation.

166 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Methods

__init__([config]) Initialize the DataFlowKernel.
add_executors(executors)
atexit_cleanup()
check_staging_inhibited(kwargs)
checkpoint([tasks]) Checkpoint the dfk incrementally to a checkpoint

file.
cleanup() DataFlowKernel cleanup.
handle_app_update(task_id, future) This function is called as a callback when an AppFu-

ture is in its final state.
handle_exec_update(task_id, future) This function is called only as a callback from an

execution attempt reaching a final state (either suc-
cessfully or failing).

handle_join_update(outer_task_id, . . .)
launch_if_ready(task_id) launch_if_ready will launch the specified task, if it

is ready to run (for example, without dependencies,
and in pending state).

launch_task(task_id, executable, *args,
**kwargs)

Handle the actual submission of the task to the ex-
ecutor layer.

load_checkpoints(checkpointDirs) Load checkpoints from the checkpoint files into a
dictionary.

log_task_states()
sanitize_and_wrap(task_id, args, kwargs) This function should be called only when all the fu-

tures we track have been resolved.
submit(func, app_args[, executors, cache, . . .]) Add task to the dataflow system.
wait_for_current_tasks() Waits for all tasks in the task list to be completed, by

waiting for their AppFuture to be completed.
wipe_task(task_id) Remove task with task_id from the internal tasks ta-

ble

Attributes

config Returns the fully initialized config that the DFK is
actively using.

5.9.5 parsl.dataflow.flow_control.FlowControl

class parsl.dataflow.flow_control.FlowControl(dfk, *args, threshold=20, interval=5)
Implements threshold-interval based flow control.

The overall goal is to trap the flow of apps from the workflow, measure it and redirect it the appropriate executors
for processing.

This is based on the following logic:

BEGIN (INTERVAL, THRESHOLD, callback) :
start = current_time()

while (current_time()-start < INTERVAL) :

(continues on next page)

5.9. Internal 167

Parsl Documentation, Release 1.1.0

(continued from previous page)

count = get_events_since(start)
if count >= THRESHOLD :

break

callback()

This logic ensures that the callbacks are activated with a maximum delay of interval for systems with
infrequent events as well as systems which would generate large bursts of events.

Once a callback is triggered, the callback generally runs a strategy method on the sites available as well asqeuque

TODO: When the debug logs are enabled this module emits duplicate messages. This issue needs more debug-
ging. What I’ve learnt so far is that the duplicate messages are present only when the timer thread is started, so
this could be from a duplicate logger being added by the thread.

__init__(dfk, *args, threshold=20, interval=5)
Initialize the flowcontrol object.

We start the timer thread here

Parameters dfk (-) – DFK object to track parsl progress

KWargs:

• threshold (int) : Tasks after which the callback is triggered

• interval (int) : seconds after which timer expires

Methods

__init__(dfk, *args[, threshold, interval]) Initialize the flowcontrol object.
add_executors(executors)
close() Merge the threads and terminate.
make_callback([kind]) Makes the callback and resets the timer.
notify(event_id) Let the FlowControl system know that there is an

event.

5.9.6 parsl.dataflow.memoization.Memoizer

class parsl.dataflow.memoization.Memoizer(dfk, memoize=True, checkpoint={})
Memoizer is responsible for ensuring that identical work is not repeated.

When a task is repeated, i.e., the same function is called with the same exact arguments, the result from a
previous execution is reused. wiki

The memoizer implementation here does not collapse duplicate calls at call time, but works only when the result
of a previous call is available at the time the duplicate call is made.

For instance:

No advantage from Memoization helps
memoization here: here:

TaskA TaskB
| TaskA |

(continues on next page)

168 Chapter 5. API Reference guide

https://en.wikipedia.org/wiki/Memoization

Parsl Documentation, Release 1.1.0

(continued from previous page)

| | TaskA done (TaskB)
| | | (TaskB)

done | |
done |

done

The memoizer creates a lookup table by hashing the function name and its inputs, and storing the results of the
function.

When a task is ready for launch, i.e., all of its arguments have resolved, we add its hash to the task datastructure.

__init__(dfk, memoize=True, checkpoint={})
Initialize the memoizer.

Parameters dfk (-) – The DFK object

KWargs:

• memoize (Bool): enable memoization or not.

• checkpoint (Dict): A checkpoint loaded as a dict.

Methods

__init__(dfk[, memoize, checkpoint]) Initialize the memoizer.
check_memo(task_id, task) Create a hash of the task and its inputs and check the

lookup table for this hash.
hash_lookup(hashsum) Lookup a hash in the memoization table.
make_hash(task) Create a hash of the task inputs.
update_memo(task_id, task, r) Updates the memoization lookup table with the re-

sult from a task.

5.9.7 parsl.dataflow.strategy.Strategy

class parsl.dataflow.strategy.Strategy(dfk)
FlowControl strategy.

As a workflow dag is processed by Parsl, new tasks are added and completed asynchronously. Parsl interfaces
executors with execution providers to construct scalable executors to handle the variable work-load generated by
the workflow. This component is responsible for periodically checking outstanding tasks and available compute
capacity and trigger scaling events to match workflow needs.

Here’s a diagram of an executor. An executor consists of blocks, which are usually created by single requests to
a Local Resource Manager (LRM) such as slurm, condor, torque, or even AWS API. The blocks could contain
several task blocks which are separate instances on workers.

|<--min_blocks |<-init_blocks max_blocks-->|
+--+
| +--------block----------+ +--------block--------+ |

executor = | | task task | ... | task task | |
| +-----------------------+ +---------------------+ |
+--+

5.9. Internal 169

Parsl Documentation, Release 1.1.0

The relevant specification options are:

1. min_blocks: Minimum number of blocks to maintain

2. init_blocks: number of blocks to provision at initialization of workflow

3. max_blocks: Maximum number of blocks that can be active due to one workflow

active_tasks = pending_tasks + running_tasks

Parallelism = slots / tasks
= [0, 1] (i.e, 0 <= p <= 1)

For example:

When p = 0, => compute with the least resources possible. infinite tasks are stacked per slot.

blocks = min_blocks { if active_tasks = 0
max(min_blocks, 1) { else

When p = 1, => compute with the most resources. one task is stacked per slot.

blocks = min (max_blocks,
ceil(active_tasks / slots))

When p = 1/2, => We stack upto 2 tasks per slot before we overflow and request a new block

let’s say min:init:max = 0:0:4 and task_blocks=2 Consider the following example: min_blocks = 0 init_blocks
= 0 max_blocks = 4 tasks_per_node = 2 nodes_per_block = 1

In the diagram, X <- task

at 2 tasks:

+---Block---|
| |
| X X |
|slot slot|
+-----------+

at 5 tasks, we overflow as the capacity of a single block is fully used.

+---Block---| +---Block---|
X X	---->	
X X		X
slot slot		slot slot
+-----------+ +-----------+

__init__(dfk)
Initialize strategy.

170 Chapter 5. API Reference guide

Parsl Documentation, Release 1.1.0

Methods

__init__(dfk) Initialize strategy.
add_executors(executors)
unset_logging() Mute newly added handlers to the root level, right

after calling executor.status

5.9.8 parsl.dataflow.flow_control.Timer

class parsl.dataflow.flow_control.Timer(callback, *args, interval=5, name=None)
This timer is a simplified version of the FlowControl timer. This timer does not employ notify events.

This is based on the following logic :

BEGIN (INTERVAL, THRESHOLD, callback) :
start = current_time()

while (current_time()-start < INTERVAL) :
wait()
break

callback()

__init__(callback, *args, interval=5, name=None)
Initialize the flowcontrol object We start the timer thread here

Parameters dfk (-) – DFK object to track parsl progress

KWargs:

• threshold (int) : Tasks after which the callback is triggered

• interval (int) : seconds after which timer expires

• name (str) : a base name to use when naming the started thread

Methods

__init__(callback, *args[, interval, name]) Initialize the flowcontrol object We start the timer
thread here

close() Merge the threads and terminate.
make_callback([kind]) Makes the callback and resets the timer.

5.9. Internal 171

Parsl Documentation, Release 1.1.0

172 Chapter 5. API Reference guide

CHAPTER

SIX

DEVELOPER DOCUMENTATION

6.1 Contributing

Parsl is an open source project that welcomes contributions from the community.

If you’re interested in contributing, please review our contributing guide.

6.2 Changelog

6.2.1 Parsl 1.1.0

Released on April 26th, 2021.

Parsl v1.1.0 includes 59 closed issues and 243 pull requests with contributions (code, tests, reviews and reports) from:

Akila Ravihansa Perera @ravihansa3000, Anna Woodard @annawoodard, @bakerjl, Ben Clifford @benclifford,
Daniel S. Katz @danielskatz, Douglas Thain @dthain, @gerrick, @JG-Quarknet, Joseph Moon @jmoon1506,
Kelly L. Rowland @kellyrowland, Lars Bilke @bilke, Logan Ward @WardLT, Kirill Nagaitsev @Loonride, Mar-
cus Schwarting @meschw04, Matt Baughman @mattebaughman, Mihael Hategan @hategan, @radiantone, Rohan
Kumar @rohankumar42, Sohit Miglani @sohitmiglani, Tim Shaffer @trshaffer, Tyler J. Skluzacek @tskluzac, Yadu
Nand Babuji @yadudoc, and Zhuozhao Li @ZhuozhaoLi

Deprecated and Removed features

• Python 3.5 is no longer supported.

• Almost definitely broken Jetstream provider removed (#1821)

New Functionality

• Allow HTEX to set CPU affinity (#1853)

• New serialization system to replace IPP serialization (#1806)

• Support for Python 3.9

• @join_apps are a variation of @python_apps where an app can launch more apps and then complete only after
the launched apps are also completed.

These are described more fully in docs/userguide/joins.rst

173

https://github.com/Parsl/parsl/blob/master/CONTRIBUTING.rst

Parsl Documentation, Release 1.1.0

• Monitoring: hub.log is now named monitoring_router.log Remove denormalised workflow duration from mon-
itoring db (#1774) Remove hostname from status table (#1847) Clarify distinction between tasks and tries
to run tasks (#1808) Replace ‘done’ state with ‘exec_done’ and ‘memo_done’ (#1848) Use repr instead of
str for monitoring fail history (#1966)

• Monitoring visualization: Make task list appear under . . . /task/ not under . . . /app/ (#1762) Test that parsl-
visualize does not return HTTP errors (#1700) Generate Gantt chart from status table rather than task table
timestamps (#1767) Hyperlinks for app page to task pages should be on the task ID, not the app name
(#1776) Use real final state to color DAG visualization (#1812)

• Make task record garbage collection optional. (#1909)

• Make checkpoint_files = get_all_checkpoints() by default (#1918)

6.2.2 Parsl 1.0.0

Released on June 11th, 2020

Parsl v1.0.0 includes 59 closed issues and 243 pull requests with contributions (code, tests, reviews and reports) from:

Akila Ravihansa Perera @ravihansa3000, Aymen Alsaadi @AymenFJA, Anna Woodard @annawoodard, Ben Clif-
ford @benclifford, Ben Glick @benhg, Benjamin Tovar @btovar, Daniel S. Katz @danielskatz, Daniel Smith @dga-
smith, Douglas Thain @dthain, Eric Jonas @ericmjonas, Geoffrey Lentner @glentner, Ian Foster @ianfoster, Kalpani
Ranasinghe @kalpanibhagya, Kyle Chard @kylechard, Lindsey Gray @lgray, Logan Ward @WardLT, Lyle Hayhurst
@lhayhurst, Mihael Hategan @hategan, Rajini Wijayawardana @rajiniw95, @saktar-unr, Tim Shaffer @trshaffer,
Tom Glanzman @TomGlanzman, Yadu Nand Babuji @yadudoc and, Zhuozhao Li @ZhuozhaoLi

Deprecated and Removed features

• Python3.5 is now marked for deprecation, and will not be supported after this release. Python3.6 will be the
earliest Python3 version supported in the next release.

• App decorator deprecated in 0.8 is now removed issue#1539 bash_app and python_app are the only sup-
ported App decorators in this release.

• IPyParallelExecutor is no longer a supported executor issue#1565

New Functionality

• WorkQueueExecutor introduced in v0.9.0 is now in beta. WorkQueueExecutor is designed as a drop-in
replacement for HighThroughputExecutor. Here are some key features: * Support for packaging the
python environment and shipping it to the worker side. This mechanism addresses propagating python envi-
ronments in grid-like systems that lack shared-filesystems or cloud environments. * WorkQueueExecutor
supports resource function tagging and resource specification * Support for resource specification kwarg is-
sue#1675

• Limited type-checking in Parsl internal components (as part of an ongoing effort)

• Improvements to caching mechanism including ability to mark certain arguments to be not counted for memo-
ization.

– Normalize known types for memoization, and reject unknown types (#1291). This means that previous
unreliable behaviour for some complex types such as dicts will become more reliable; and that other
previous unreliable behaviour for other unknown complex types will now cause an error. Handling can be
added for those types using parsl.memoization.id_for_memo.

174 Chapter 6. Developer documentation

https://github.com/Parsl/parsl/issues/1539
https://github.com/Parsl/parsl/issues/1565
https://github.com/Parsl/parsl/issues/1675
https://github.com/Parsl/parsl/issues/1675

Parsl Documentation, Release 1.1.0

– Add ability to label some arguments in an app invocation as not memoized using the ignore_for_cache app
keyword (PR 1568)

• Special keyword args: ‘inputs’, ‘outputs’ that are used to specify files no longer support strings and now require
File objects. For example, the following snippet is no longer supported in v1.0.0:

@bash_app
def cat(inputs=[], outputs=[]):

return 'cat {} > {}'.format(inputs[0], outputs[0])

concat = cat(inputs=['hello-0.txt'],
outputs=['hello-1.txt'])

This is the new syntax:

from parsl import File

@bash_app
def cat(inputs=[], outputs=[]):

return 'cat {} > {}'.format(inputs[0].filepath, outputs[0].filepath)

concat = cat(inputs=[File('hello-0.txt')],
outputs=[File('hello-1.txt')])

Since filenames are no longer passed to apps as strings, and the string filepath is required, it can be
accessed from the File object using the filepath attribute.

from parsl import File

@bash_app
def cat(inputs=[], outputs=[]):

return 'cat {} > {}'.format(inputs[0].filepath, outputs[0].filepath)

• New launcher: WrappedLauncher for launching tasks inside containers.

• SSHChannel now supports a key_filename kwarg issue#1639

• Newly added Makefile wraps several frequent developer operations such as:

– Run the test-suite: make test

– Install parsl: make install

– Create a virtualenv: make virtualenv

– Tag release and push to release channels: make deploy

• Several updates to the HighThroughputExecutor:

– By default, the HighThroughputExecutor will now use heuristics to detect and try all addresses
when the workers connect back to the parsl master. An address can be configured manually using the
HighThroughputExecutor(address=<address_string>) kwarg option.

– Support for Mac OS. (pull#1469, pull#1738)

– Cleaner reporting of version mismatches and automatic suppression of non-critical errors.

– Separate worker log directories by block id issue#1508

• Support for garbage collection to limit memory consumption in long-lived scripts.

• All cluster providers now use max_blocks=1 by default issue#1730 to avoid over-provisioning.

• New JobStatus class for better monitoring of Jobs submitted to batch schedulers.

6.2. Changelog 175

https://github.com/Parsl/parsl/issues/1639
https://github.com/Parsl/parsl/pull/1469
https://github.com/Parsl/parsl/pull/1738
https://github.com/Parsl/parsl/issues/1508
https://github.com/Parsl/parsl/issues/1730

Parsl Documentation, Release 1.1.0

Bug Fixes

• Ignore AUTO_LOGNAME for caching issue#1642

• Add batch jobs to PBS/torque job status table issue#1650

• Use higher default buffer threshold for serialization issue#1654

• Do not pass mutable default to ignore_for_cache issue#1656

• Several improvements and fixes to Monitoring

• Fix sites/test_ec2 failure when aws user opts specified issue#1375

• Fix LocalProvider to kill the right processes, rather than all processes owned by user issue#1447

• Exit htex probe loop with first working address issue#1479

• Allow slurm partition to be optional issue#1501

• Fix race condition with wait_for_tasks vs task completion issue#1607

• Fix Torque job_id truncation issue#1583

• Cleaner reporting for Serialization Errors issue#1355

• Results from zombie managers do not crash the system, but will be ignored issue#1665

• Guarantee monitoring will send out at least one message issue#1446

• Fix monitoring ctrlc hang issue#1670

6.2.3 Parsl 0.9.0

Released on October 25th, 2019

Parsl v0.9.0 includes 199 closed issues and pull requests with contributions (code, tests, reviews and reports) from:

Andrew Litteken @AndrewLitteken, Anna Woodard @annawoodard, Ben Clifford @benclifford, Ben Glick @benhg,
Daniel S. Katz @danielskatz, Daniel Smith @dgasmith, Engin Arslan @earslan58, Geoffrey Lentner @glentner,
John Hover @jhover Kyle Chard @kylechard, TJ Dasso @tjdasso, Ted Summer @macintoshpie, Tom Glanzman
@TomGlanzman, Levi Naden @LNaden, Logan Ward @WardLT, Matthew Welborn @mattwelborn, @MatthewBM,
Raphael Fialho @rapguit, Yadu Nand Babuji @yadudoc, and Zhuozhao Li @ZhuozhaoLi

New Functionality

• Parsl will no longer do automatic keyword substitution in @bash_app in favor of deferring to Python’s format
method and newer f-strings. For example,

The following example worked until v0.8.0
@bash_app
def cat(inputs=[], outputs=[]):

return 'cat {inputs[0]} > {outputs[0]}' # <-- Relies on Parsl auto
→˓formatting the string

Following are two mechanisms that will work going forward from v0.9.0
@bash_app
def cat(inputs=[], outputs=[]):

return 'cat {} > {}'.format(inputs[0], outputs[0]) # <-- Use str.
→˓format method

(continues on next page)

176 Chapter 6. Developer documentation

https://github.com/Parsl/parsl/issues/1642
https://github.com/Parsl/parsl/issues/1650
https://github.com/Parsl/parsl/issues/1654
https://github.com/Parsl/parsl/issues/1656
https://github.com/Parsl/parsl/issues/1375
https://github.com/Parsl/parsl/issues/1447
https://github.com/Parsl/parsl/issues/1479
https://github.com/Parsl/parsl/issues/1501
https://github.com/Parsl/parsl/issues/1607
https://github.com/Parsl/parsl/issues/1583
https://github.com/Parsl/parsl/issues/1355
https://github.com/Parsl/parsl/issues/1665
https://github.com/Parsl/parsl/issues/1446
https://github.com/Parsl/parsl/issues/1670
https://docs.python.org/3.1/library/stdtypes.html#str.format
https://docs.python.org/3.1/library/stdtypes.html#str.format
https://www.python.org/dev/peps/pep-0498/

Parsl Documentation, Release 1.1.0

(continued from previous page)

@bash_app
def cat(inputs=[], outputs=[]):

return f'cat {inputs[0]} > {outputs[0]}' # <-- OR use f-strings
→˓introduced in Python3.6

• @python_app now takes a walltime kwarg to limit the task execution time.

• New file staging API parsl.data_provider.staging.Staging to support pluggable file staging
methods. The methods implemented in 0.8.0 (HTTP(S), FTP and Globus) are still present, along with two new
methods which perform HTTP(S) and FTP staging on worker nodes to support non-shared-filesystem executors
such as clouds.

• Behaviour change for storage_access parameter. In 0.8.0, this was used to specify Globus staging configuration.
In 0.9.0, if this parameter is specified it must specify all desired staging providers. To keep the same staging
providers as in 0.8.0, specify:

from parsl.data_provider.data_manager import default_staging
storage_access = default_staging + [GlobusStaging(...)]

GlobusScheme in 0.8.0 has been renamed GlobusStaging and moved to a new module,
parsl.data_provider.globus

• WorkQueueExecutor: a new executor that integrates functionality from Work Queue is now available.

• New provider to support for Ad-Hoc clusters parsl.providers.AdHocProvider

• New provider added to support LSF on Summit parsl.providers.LSFProvider

• Support for CPU and Memory resource hints to providers (github).

• The logging_level=logging.INFO in MonitoringHub is replaced with
monitoring_debug=False:

monitoring=MonitoringHub(
hub_address=address_by_hostname(),
hub_port=55055,
monitoring_debug=False,
resource_monitoring_interval=10,

),

• Managers now have a worker watchdog thread to report task failures that crash a worker.

• Maximum idletime after which idle blocks can be relinquished can now be configured as follows:

config=Config(
max_idletime=120.0 , # float, unit=seconds
strategy='simple'

)

• Several test-suite improvements that have dramatically reduced test duration.

• Several improvements to the Monitoring interface.

• Configurable port on parsl.channels.SSHChannel.

• suppress_failure now defaults to True.

• HighThroughputExecutor is the recommended executor, and IPyParallelExecutor is deprecated.

• HighThroughputExecutor will expose worker information via environment variables:
PARSL_WORKER_RANK and PARSL_WORKER_COUNT

6.2. Changelog 177

http://ccl.cse.nd.edu/software/workqueue/
https://github.com/Parsl/parsl/issues/942

Parsl Documentation, Release 1.1.0

Bug Fixes

• ZMQError: Operation cannot be accomplished in current state bug issue#1146

• Fix event loop error with monitoring enabled issue#532

• Tasks per app graph appears as a sawtooth, not as rectangles issue#1032.

• Globus status processing failure issue#1317.

• Sporadic globus staging error issue#1170.

• RepresentationMixin breaks on classes with no default parameters issue#1124.

• File localpath staging conflict issue#1197.

• Fix IndexError when using CondorProvider with strategy enabled issue#1298.

• Improper dependency error handling causes hang issue#1285.

• Memoization/checkpointing fixes for bash apps issue#1269.

• CPU User Time plot is strangely cumulative issue#1033.

• Issue requesting resources on non-exclusive nodes issue#1246.

• parsl + htex + slurm hangs if slurm command times out, without making further progress issue#1241.

• Fix strategy overallocations issue#704.

• max_blocks not respected in SlurmProvider issue#868.

• globus staging does not work with a non-default workdir issue#784.

• Cumulative CPU time loses time when subprocesses end issue#1108.

• Interchange KeyError due to too many heartbeat missed issue#1128.

6.2.4 Parsl 0.8.0

Released on June 13th, 2019

Parsl v0.8.0 includes 58 closed issues and pull requests with contributions (code, tests, reviews and reports)

from: Andrew Litteken @AndrewLitteken, Anna Woodard @annawoodard, Antonio Villarreal @villarrealas, Ben
Clifford @benc, Daniel S. Katz @danielskatz, Eric Tatara @etatara, Juan David Garrido @garri1105, Kyle Chard
@@kylechard, Lindsey Gray @lgray, Tim Armstrong @timarmstrong, Tom Glanzman @TomGlanzman, Yadu Nand
Babuji @yadudoc, and Zhuozhao Li @ZhuozhaoLi

New Functionality

• Monitoring is now integrated into parsl as default functionality.

• parsl.AUTO_LOGNAME: Support for a special AUTO_LOGNAME option to auto generate stdout and
stderr file paths.

• File no longer behaves as a string. This means that operations in apps that treated a File as a string will
break. For example the following snippet will have to be updated:

178 Chapter 6. Developer documentation

https://github.com/Parsl/parsl/issues/1146
https://github.com/Parsl/parsl/issues/532
https://github.com/Parsl/parsl/issues/1032
https://github.com/Parsl/parsl/issues/1317
https://github.com/Parsl/parsl/issues/1170
https://github.com/Parsl/parsl/issues/1124
https://github.com/Parsl/parsl/issues/1197
https://github.com/Parsl/parsl/issues/1298
https://github.com/Parsl/parsl/issues/1285
https://github.com/Parsl/parsl/issues/1269
https://github.com/Parsl/parsl/issues/1033
https://github.com/Parsl/parsl/issues/1246
https://github.com/Parsl/parsl/issues/1241
https://github.com/Parsl/parsl/issues/704
https://github.com/Parsl/parsl/issues/868
https://github.com/Parsl/parsl/issues/784
https://github.com/Parsl/parsl/issues/1108
https://github.com/Parsl/parsl/issues/1128

Parsl Documentation, Release 1.1.0

Old style: " ".join(inputs) is legal since inputs will behave like a list of
→˓strings
@bash_app
def concat(inputs=[], outputs=[], stdout="stdout.txt", stderr='stderr.txt'):

return "cat {0} > {1}".format(" ".join(inputs), outputs[0])

New style:
@bash_app
def concat(inputs=[], outputs=[], stdout="stdout.txt", stderr='stderr.txt'):

return "cat {0} > {1}".format(" ".join(list(map(str,inputs))), outputs[0])

• Cleaner user app file log management.

• Updated configurations using HighThroughputExecutor in the configuration section of the userguide.

• Support for OAuth based SSH with OAuthSSHChannel.

Bug Fixes

• Monitoring resource usage bug issue#975

• Bash apps fail due to missing dir paths issue#1001

• Viz server explicit binding fix issue#1023

• Fix sqlalchemy version warning issue#997

• All workflows are called typeguard issue#973

• Fix ModuleNotFoundError: No module named 'monitoring' issue#971

• Fix sqlite3 integrity error issue#920

• HTEX interchange check python version mismatch to the micro level issue#857

• Clarify warning message when a manager goes missing issue#698

• Apps without a specified DFK should use the global DFK in scope at call time, not at other times. issue#697

6.2.5 Parsl 0.7.2

Released on Mar 14th, 2019

New Functionality

• Monitoring: Support for reporting monitoring data to a local sqlite database is now available.

• Parsl is switching to an opt-in model for anonymous usage tracking. Read more here: Usage statistics collection.

• bash_app now supports specification of write modes for stdout and stderr.

• Persistent volume support added to KubernetesProvider.

• Scaling recommendations from study on Bluewaters is now available in the userguide.

6.2. Changelog 179

https://github.com/Parsl/parsl/issues/975
https://github.com/Parsl/parsl/issues/1001
https://github.com/Parsl/parsl/issues/1023
https://github.com/Parsl/parsl/issues/997
https://github.com/Parsl/parsl/issues/973
https://github.com/Parsl/parsl/issues/971
https://github.com/Parsl/parsl/issues/920
https://github.com/Parsl/parsl/issues/857
https://github.com/Parsl/parsl/issues/698
https://github.com/Parsl/parsl/issues/697

Parsl Documentation, Release 1.1.0

6.2.6 Parsl 0.7.1

Released on Jan 18th, 2019

New Functionality

• LowLatencyExecutor: a new executor designed to address use-cases with tight latency requirements such
as model serving (Machine Learning), function serving and interactive analyses is now available.

• New options in HighThroughputExecutor:

– suppress_failure: Enable suppression of worker rejoin errors.

– max_workers: Limit workers spawned by manager

• Late binding of DFK, allows apps to pick DFK dynamically at call time. This functionality adds safety to cases
where a new config is loaded and a new DFK is created.

Bug fixes

• A critical bug in HighThroughputExecutor that led to debug logs overflowing channels and terminating
blocks of resource is fixed issue#738

6.2.7 Parsl 0.7.0

Released on Dec 20st, 2018

Parsl v0.7.0 includes 110 closed issues with contributions (code, tests, reviews and reports) from: Alex Hays
@ahayschi, Anna Woodard @annawoodard, Ben Clifford @benc, Connor Pigg @ConnorPigg, David Heise @da-
heise, Daniel S. Katz @danielskatz, Dominic Fitzgerald @djf604, Francois Lanusse @EiffL, Juan David Garrido
@garri1105, Gordon Watts @gordonwatts, Justin Wozniak @jmjwozniak, Joseph Moon @jmoon1506, Kenyi Hur-
tado @khurtado, Kyle Chard @kylechard, Lukasz Lacinski @lukaszlacinski, Ravi Madduri @madduri, Marco Govoni
@mgovoni-devel, Reid McIlroy-Young @reidmcy, Ryan Chard @ryanchard, @sdustrud, Yadu Nand Babuji @yadu-
doc, and Zhuozhao Li @ZhuozhaoLi

New functionality

• HighThroughputExecutor: a new executor intended to replace the IPyParallelExecutor is now
available. This new executor addresses several limitations of IPyParallelExecutor such as:

– Scale beyond the ~300 worker limitation of IPP.

– Multi-processing manager supports execution on all cores of a single node.

– Improved worker side reporting of version, system and status info.

– Supports failure detection and cleaner manager shutdown.

Here’s a sample configuration for using this executor locally:

from parsl.providers import LocalProvider
from parsl.channels import LocalChannel

from parsl.config import Config
from parsl.executors import HighThroughputExecutor

(continues on next page)

180 Chapter 6. Developer documentation

https://github.com/Parsl/parsl/issues/738

Parsl Documentation, Release 1.1.0

(continued from previous page)

config = Config(
executors=[

HighThroughputExecutor(
label="htex_local",
cores_per_worker=1,
provider=LocalProvider(

channel=LocalChannel(),
init_blocks=1,
max_blocks=1,

),
)

],
)

More information on configuring is available in the Configuration section.

• ExtremeScaleExecutor a new executor targeting supercomputer scale (>1000 nodes) workflows is now
available.

Here’s a sample configuration for using this executor locally:

from parsl.providers import LocalProvider
from parsl.channels import LocalChannel
from parsl.launchers import SimpleLauncher

from parsl.config import Config
from parsl.executors import ExtremeScaleExecutor

config = Config(
executors=[

ExtremeScaleExecutor(
label="extreme_local",
ranks_per_node=4,
provider=LocalProvider(

channel=LocalChannel(),
init_blocks=0,
max_blocks=1,
launcher=SimpleLauncher(),

)
)

],
strategy=None,

)

More information on configuring is available in the Configuration section.

• The libsubmit repository has been merged with Parsl to reduce overheads on maintenance with respect to doc-
umentation, testing, and release synchronization. Since the merge, the API has undergone several updates to
support the growing collection of executors, and as a result Parsl 0.7.0+ will not be backwards compatible with
the standalone libsubmit repos. The major components of libsubmit are now available through Parsl, and require
the following changes to import lines to migrate scripts to 0.7.0:

– from libsubmit.providers import <ProviderName> is now from parsl.
providers import <ProviderName>

– from libsubmit.channels import <ChannelName> is now from parsl.
channels import <ChannelName>

6.2. Changelog 181

Parsl Documentation, Release 1.1.0

– from libsubmit.launchers import <LauncherName> is now from parsl.
launchers import <LauncherName>

Warning: This is a breaking change from Parsl v0.6.0

• To support resource-based requests for workers and to maintain uniformity across interfaces,
tasks_per_node is no longer a provider option. Instead, the notion of tasks_per_node is de-
fined via executor specific options, for eg:

– IPyParallelExecutor provides workers_per_node

– HighThroughputExecutor provides cores_per_worker to allow for worker launches
to be determined based on the number of cores on the compute node.

– ExtremeScaleExecutor uses ranks_per_node to specify the ranks to launch per node.

Warning: This is a breaking change from Parsl v0.6.0

• Major upgrades to the monitoring infrastructure.

– Monitoring information can now be written to a SQLite database, created on the fly by Parsl

– Web-based monitoring to track workflow progress

• Determining the correct IP address/interface given network firewall rules is often a nuisance. To simplify this,
three new methods are now supported:

– parsl.addresses.address_by_route

– parsl.addresses.address_by_query

– parsl.addresses.address_by_hostname

• AprunLauncher now supports overrides option that allows arbitrary strings to be added to the aprun
launcher call.

• DataFlowKernel has a new method wait_for_current_tasks()

• DataFlowKernel now uses per-task locks and an improved mechanism to handle task completions improving
performance for workflows with large number of tasks.

Bug fixes (highlights)

• Ctlr+C should cause fast DFK cleanup issue#641

• Fix to avoid padding in wtime_to_minutes() issue#522

• Updates to block semantics issue#557

• Updates public_ip to address for clarity issue#557

• Improvements to launcher docs issue#424

• Fixes for inconsistencies between stream_logger and file_logger issue#629

• Fixes to DFK discarding some un-executed tasks at end of workflow issue#222

• Implement per-task locks to avoid deadlocks issue#591

• Fixes to internal consistency errors issue#604

182 Chapter 6. Developer documentation

https://github.com/Parsl/parsl/issues/641
https://github.com/Parsl/parsl/issues/522
https://github.com/Parsl/parsl/issues/557
https://github.com/Parsl/parsl/issues/557
https://github.com/Parsl/parsl/issues/424
https://github.com/Parsl/parsl/issues/629
https://github.com/Parsl/parsl/issues/222
https://github.com/Parsl/parsl/issues/591
https://github.com/Parsl/parsl/issues/604

Parsl Documentation, Release 1.1.0

• Removed unnecessary provider labels issue#440

• Fixes to TorqueProvider to work on NSCC issue#489

• Several fixes and updates to monitoring subsystem issue#471

• DataManager calls wrong DFK issue#412

• Config isn’t reloading properly in notebooks issue#549

• Cobalt provider partition should be queue issue#353

• bash AppFailure exceptions contain useful but un-displayed information issue#384

• Do not CD to engine_dir issue#543

• Parsl install fails without kubernetes config file issue#527

• Fix import error issue#533

• Change Local Database Strategy from Many Writers to a Single Writer issue#472

• All run-related working files should go in the rundir unless otherwise configured issue#457

• Fix concurrency issue with many engines accessing the same IPP config issue#469

• Ensure we are not caching failed tasks issue#368

• File staging of unknown schemes fails silently issue#382

• Inform user checkpointed results are being used issue#494

• Fix IPP + python 3.5 failure issue#490

• File creation fails if no executor has been loaded issue#482

• Make sure tasks in dep_fail state are retried issue#473

• Hard requirement for CMRESHandler issue#422

• Log error Globus events to stderr issue#436

• Take ‘slots’ out of logging issue#411

• Remove redundant logging issue#267

• Zombie ipcontroller processes - Process cleanup in case of interruption issue#460

• IPyparallel failure when submitting several apps in parallel threads issue#451

• SlurmProvider + SingleNodeLauncher starts all engines on a single core issue#454

• IPP engine_dir has no effect if indicated dir does not exist issue#446

• Clarify AppBadFormatting error issue#433

• confusing error message with simple configs issue#379

• Error due to missing kubernetes config file issue#432

• parsl.configs and parsl.tests.configs missing init files issue#409

• Error when Python versions differ issue#62

• Fixing ManagerLost error in HTEX/EXEX issue#577

• Write all debug logs to rundir by default in HTEX/EXEX issue#574

• Write one log per HTEX worker issue#572

• Fixing ManagerLost error in HTEX/EXEX issue#577

6.2. Changelog 183

https://github.com/Parsl/parsl/issues/440
https://github.com/Parsl/parsl/issues/489
https://github.com/Parsl/parsl/issues/471
https://github.com/Parsl/parsl/issues/412
https://github.com/Parsl/parsl/issues/549
https://github.com/Parsl/parsl/issues/353
https://github.com/Parsl/parsl/issues/384
https://github.com/Parsl/parsl/issues/543
https://github.com/Parsl/parsl/issues/527
https://github.com/Parsl/parsl/issues/533
https://github.com/Parsl/parsl/issues/472
https://github.com/Parsl/parsl/issues/457
https://github.com/Parsl/parsl/issues/469
https://github.com/Parsl/parsl/issues/368
https://github.com/Parsl/parsl/issues/382
https://github.com/Parsl/parsl/issues/494
https://github.com/Parsl/parsl/issues/490
https://github.com/Parsl/parsl/issues/482
https://github.com/Parsl/parsl/issues/473
https://github.com/Parsl/parsl/issues/422
https://github.com/Parsl/parsl/issues/436
https://github.com/Parsl/parsl/issues/411
https://github.com/Parsl/parsl/issues/267
https://github.com/Parsl/parsl/issues/460
https://github.com/Parsl/parsl/issues/451
https://github.com/Parsl/parsl/issues/454
https://github.com/Parsl/parsl/issues/446
https://github.com/Parsl/parsl/issues/433
https://github.com/Parsl/parsl/issues/379
https://github.com/Parsl/parsl/issues/432
https://github.com/Parsl/parsl/issues/409
https://github.com/Parsl/parsl/issues/62
https://github.com/Parsl/parsl/issues/577
https://github.com/Parsl/parsl/issues/574
https://github.com/Parsl/parsl/issues/572
https://github.com/Parsl/parsl/issues/577

Parsl Documentation, Release 1.1.0

6.2.8 Parsl 0.6.1

Released on July 23rd, 2018.

This point release contains fixes for issue#409

6.2.9 Parsl 0.6.0

Released July 23rd, 2018.

New functionality

• Switch to class based configuration issue#133

Here’s a the config for using threads for local execution

from parsl.config import Config
from parsl.executors.threads import ThreadPoolExecutor

config = Config(executors=[ThreadPoolExecutor()])

Here’s a more complex config that uses SSH to run on a Slurm based cluster

from libsubmit.channels import SSHChannel
from libsubmit.providers import SlurmProvider

from parsl.config import Config
from parsl.executors.ipp import IPyParallelExecutor
from parsl.executors.ipp_controller import Controller

config = Config(
executors=[

IPyParallelExecutor(
provider=SlurmProvider(

'westmere',
channel=SSHChannel(

hostname='swift.rcc.uchicago.edu',
username=<USERNAME>,
script_dir=<SCRIPTDIR>

),
init_blocks=1,
min_blocks=1,
max_blocks=2,
nodes_per_block=1,
tasks_per_node=4,
parallelism=0.5,
overrides=<SPECIFY_INSTRUCTIONS_TO_LOAD_PYTHON3>

),
label='midway_ipp',
controller=Controller(public_ip=<PUBLIC_IP>),

)
]

)

• Implicit Data Staging issue#281

184 Chapter 6. Developer documentation

https://github.com/Parsl/parsl/issues/409
https://github.com/Parsl/parsl/issues/133
https://github.com/Parsl/parsl/issues/281

Parsl Documentation, Release 1.1.0

create an remote Parsl file
inp = File('ftp://www.iana.org/pub/mirror/rirstats/arin/ARIN-STATS-FORMAT-CHANGE.
→˓txt')

create a local Parsl file
out = File('file:///tmp/ARIN-STATS-FORMAT-CHANGE.txt')

call the convert app with the Parsl file
f = convert(inputs=[inp], outputs=[out])
f.result()

• Support for application profiling issue#5

• Real-time usage tracking via external systems issue#248, issue#251

• Several fixes and upgrades to tests and testing infrastructure issue#157, issue#159, issue#128, issue#192, is-
sue#196

• Better state reporting in logs issue#242

• Hide DFK issue#50

– Instead of passing a config dictionary to the DataFlowKernel, now you can call parsl.load(Config)

– Instead of having to specify the dfk at the time of App declaration, the DFK is a singleton loaded at call
time :

import parsl
from parsl.tests.configs.local_ipp import config
parsl.load(config)

@App('python')
def double(x):

return x * 2

fut = double(5)
fut.result()

• Support for better reporting of remote side exceptions issue#110

Bug Fixes

• Making naming conventions consistent issue#109

• Globus staging returns unclear error bug issue#178

• Duplicate log-lines when using IPP issue#204

• Usage tracking with certain missing network causes 20s startup delay. issue#220

• task_exit checkpointing repeatedly truncates checkpoint file during run bug issue#230

• Checkpoints will not reload from a run that was Ctrl-C’ed issue#232

• Race condition in task checkpointing issue#234

• Failures not to be checkpointed issue#239

• Naming inconsitencies with maxThreads, max_threads, max_workers are now resolved issue#303

• Fatal not a git repository alerts issue#326

• Default kwargs in bash apps unavailable at command-line string format time issue#349

6.2. Changelog 185

https://github.com/Parsl/parsl/issues/5
https://github.com/Parsl/parsl/issues/248
https://github.com/Parsl/parsl/issues/251
https://github.com/Parsl/parsl/issues/157
https://github.com/Parsl/parsl/issues/159
https://github.com/Parsl/parsl/issues/128
https://github.com/Parsl/parsl/issues/192
https://github.com/Parsl/parsl/issues/196
https://github.com/Parsl/parsl/issues/196
https://github.com/Parsl/parsl/issues/242
https://github.com/Parsl/parsl/issues/50
https://github.com/Parsl/parsl/issues/110
https://github.com/Parsl/parsl/issues/109
https://github.com/Parsl/parsl/issues/178
https://github.com/Parsl/parsl/issues/204
https://github.com/Parsl/parsl/issues/220
https://github.com/Parsl/parsl/issues/230
https://github.com/Parsl/parsl/issues/232
https://github.com/Parsl/parsl/issues/234
https://github.com/Parsl/parsl/issues/239
https://github.com/Parsl/parsl/issues/303
https://github.com/Parsl/parsl/issues/326
https://github.com/Parsl/parsl/issues/349

Parsl Documentation, Release 1.1.0

• Fix launcher class inconsistencies issue#360

• Several fixes to AWS provider issue#362

– Fixes faulty status updates

– Faulty termination of instance at cleanup, leaving zombie nodes.

6.2.10 Parsl 0.5.1

Released. May 15th, 2018.

New functionality

• Better code state description in logging issue#242

• String like behavior for Files issue#174

• Globus path mapping in config issue#165

Bug Fixes

• Usage tracking with certain missing network causes 20s startup delay. issue#220

• Checkpoints will not reload from a run that was Ctrl-C’ed issue#232

• Race condition in task checkpointing issue#234

• task_exit checkpointing repeatedly truncates checkpoint file during run issue#230

• Make dfk.cleanup() not cause kernel to restart with Jupyter on Mac issue#212

• Fix automatic IPP controller creation on OS X issue#206

• Passing Files breaks over IPP issue#200

• repr call after AppException instantiation raises AttributeError issue#197

• Allow DataFuture to be initialized with a str file object issue#185

• Error for globus transfer failure issue#162

6.2.11 Parsl 0.5.2

Released. June 21st, 2018. This is an emergency release addressing issue#347

Bug Fixes

• Parsl version conflict with libsubmit 0.4.1 issue#347

186 Chapter 6. Developer documentation

https://github.com/Parsl/parsl/issues/360
https://github.com/Parsl/parsl/issues/362
https://github.com/Parsl/parsl/issues/242
https://github.com/Parsl/parsl/issues/174
https://github.com/Parsl/parsl/issues/165
https://github.com/Parsl/parsl/issues/220
https://github.com/Parsl/parsl/issues/232
https://github.com/Parsl/parsl/issues/234
https://github.com/Parsl/parsl/issues/230
https://github.com/Parsl/parsl/issues/212
https://github.com/Parsl/parsl/issues/206
https://github.com/Parsl/parsl/issues/200
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/exceptions.html#AttributeError
https://github.com/Parsl/parsl/issues/197
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/Parsl/parsl/issues/185
https://github.com/Parsl/parsl/issues/162
https://github.com/Parsl/parsl/issues/347
https://github.com/Parsl/parsl/issues/347

Parsl Documentation, Release 1.1.0

6.2.12 Parsl 0.5.0

Released. Apr 16th, 2018.

New functionality

• Support for Globus file transfers issue#71

Caution: This feature is available from Parsl v0.5.0 in an experimental state.

• PathLike behavior for Files issue#174

– Files behave like strings here :

myfile = File("hello.txt")
f = open(myfile, 'r')

• Automatic checkpointing modes issue#106

config = {
"globals": {

"lazyErrors": True,
"memoize": True,
"checkpointMode": "dfk_exit"

}
}

• Support for containers with docker issue#45

localDockerIPP = {
"sites": [

{"site": "Local_IPP",
"auth": {"channel": None},
"execution": {

"executor": "ipp",
"container": {

"type": "docker", # <----- Specify Docker
"image": "app1_v0.1", # <------Specify docker image

},
"provider": "local",
"block": {

"initBlocks": 2, # Start with 4 workers
},

}
}],

"globals": {"lazyErrors": True} }

Caution: This feature is available from Parsl v0.5.0 in an experimental state.

• Cleaner logging issue#85

– Logs are now written by default to runinfo/RUN_ID/parsl.log.

– INFO log lines are more readable and compact

6.2. Changelog 187

https://github.com/Parsl/parsl/issues/71
https://github.com/Parsl/parsl/issues/174
https://github.com/Parsl/parsl/issues/106
https://github.com/Parsl/parsl/issues/45
https://github.com/Parsl/parsl/issues/85

Parsl Documentation, Release 1.1.0

• Local configs are now packaged issue#96

from parsl.configs.local import localThreads
from parsl.configs.local import localIPP

Bug Fixes

• Passing Files over IPP broken issue#200

• Fix DataFuture.__repr__ for default instantiation issue#164

• Results added to appCache before retries exhausted issue#130

• Missing documentation added for Multisite and Error handling issue#116

• TypeError raised when a bad stdout/stderr path is provided. issue#104

• Race condition in DFK issue#102

• Cobalt provider broken on Cooley.alfc issue#101

• No blocks provisioned if parallelism/blocks = 0 issue#97

• Checkpoint restart assumes rundir issue#95

• Logger continues after cleanup is called issue#93

6.2.13 Parsl 0.4.1

Released. Feb 23rd, 2018.

New functionality

• GoogleCloud provider support via libsubmit

• GridEngine provider support via libsubmit

Bug Fixes

• Cobalt provider issues with job state issue#101

• Parsl updates config inadvertently issue#98

• No blocks provisioned if parallelism/blocks = 0 issue#97

• Checkpoint restart assumes rundir bug issue#95

• Logger continues after cleanup called enhancement issue#93

• Error checkpointing when no cache enabled issue#92

• Several fixes to libsubmit.

188 Chapter 6. Developer documentation

https://github.com/Parsl/parsl/issues/96
https://github.com/Parsl/parsl/issues/200
https://github.com/Parsl/parsl/issues/164
https://github.com/Parsl/parsl/issues/130
https://github.com/Parsl/parsl/issues/116
https://github.com/Parsl/parsl/issues/104
https://github.com/Parsl/parsl/issues/102
https://github.com/Parsl/parsl/issues/101
https://github.com/Parsl/parsl/issues/97
https://github.com/Parsl/parsl/issues/95
https://github.com/Parsl/parsl/issues/93
https://github.com/Parsl/parsl/issues/101
https://github.com/Parsl/parsl/issues/98
https://github.com/Parsl/parsl/issues/97
https://github.com/Parsl/parsl/issues/95
https://github.com/Parsl/parsl/issues/93
https://github.com/Parsl/parsl/issues/92

Parsl Documentation, Release 1.1.0

6.2.14 Parsl 0.4.0

Here are the major changes included in the Parsl 0.4.0 release.

New functionality

• Elastic scaling in response to workflow pressure. issue#46 Options minBlocks, maxBlocks, and
parallelism now work and controls workflow execution.

Documented in: Elasticity

• Multisite support, enables targetting apps within a single workflow to different sites issue#48

@App('python', dfk, sites=['SITE1', 'SITE2'])
def my_app(...):

...

• Anonymized usage tracking added. issue#34

Documented in: Usage statistics collection

• AppCaching and Checkpointing issue#43

Set cache=True to enable appCaching
@App('python', dfk, cache=True)
def my_app(...):

...

To checkpoint a workflow:
dfk.checkpoint()

Documented in: Checkpointing, App caching

• Parsl now creates a new directory under ./runinfo/ with an incrementing number per workflow invocation

• Troubleshooting guide and more documentation

• PEP8 conformance tests added to travis testing issue#72

Bug Fixes

• Missing documentation from libsubmit was added back issue#41

• Fixes for script_dir | scriptDir inconsistencies issue#64

– We now use scriptDir exclusively.

• Fix for caching not working on jupyter notebooks issue#90

• Config defaults module failure when part of the option set is provided issue#74

• Fixes for network errors with usage_tracking issue#70

• PEP8 conformance of code and tests with limited exclusions issue#72

• Doc bug in recommending max_workers instead of maxThreads issue#73

6.2. Changelog 189

https://github.com/Parsl/parsl/issues/46
https://github.com/Parsl/parsl/issues/48
https://github.com/Parsl/parsl/issues/34
https://github.com/Parsl/parsl/issues/43
https://github.com/Parsl/parsl/issues/72
https://github.com/Parsl/parsl/issues/41
https://github.com/Parsl/parsl/issues/64
https://github.com/Parsl/parsl/issues/90
https://github.com/Parsl/parsl/issues/74
https://github.com/Parsl/parsl/issues/70
https://github.com/Parsl/parsl/issues/72
https://github.com/Parsl/parsl/issues/70

Parsl Documentation, Release 1.1.0

6.2.15 Parsl 0.3.1

This is a point release with mostly minor features and several bug fixes

• Fixes for remote side handling

• Support for specifying IPythonDir for IPP controllers

• Several tests added that test provider launcher functionality from libsubmit

• This upgrade will also push the libsubmit requirement from 0.2.4 -> 0.2.5.

Several critical fixes from libsubmit are brought in:

• Several fixes and improvements to Condor from @annawoodard.

• Support for Torque scheduler

• Provider script output paths are fixed

• Increased walltimes to deal with slow scheduler system

• Srun launcher for slurm systems

• SSH channels now support file_pull() method While files are not automatically staged, the channels provide
support for bi-directional file transport.

6.2.16 Parsl 0.3.0

Here are the major changes that are included in the Parsl 0.3.0 release.

New functionality

• Arguments to DFK has changed:

Old dfk(executor_obj)

New, pass a list of executors dfk(executors=[list_of_executors])

Alternatively, pass the config from which the DFK will #instantiate resources
dfk(config=config_dict)

• Execution providers have been restructured to a separate repo: libsubmit

• Bash app styles have changes to return the commandline string rather than be assigned to the special keyword
cmd_line. Please refer to RFC #37 for more details. This is a non-backward compatible change.

• Output files from apps are now made available as an attribute of the AppFuture. Please refer #26 for more
details. This is a non-backward compatible change

This is the pre 0.3.0 style
app_fu, [file1, file2] = make_files(x, y, outputs=['f1.txt', 'f2.txt'])

#This is the style that will be followed going forward.
app_fu = make_files(x, y, outputs=['f1.txt', 'f2.txt'])
[file1, file2] = app_fu.outputs

• DFK init now supports auto-start of IPP controllers

• Support for channels via libsubmit. Channels enable execution of commands from execution providers either
locally, or remotely via ssh.

• Bash apps now support timeouts.

190 Chapter 6. Developer documentation

https://github.com/Parsl/libsubmit
https://github.com/Parsl/parsl/issues/37

Parsl Documentation, Release 1.1.0

• Support for cobalt execution provider.

Bug fixes

• Futures have inconsistent behavior in bash app fn body #35

• Parsl dflow structure missing dependency information #30

6.2.17 Parsl 0.2.0

Here are the major changes that are included in the Parsl 0.2.0 release.

New functionality

• Support for execution via IPythonParallel executor enabling distributed execution.

• Generic executors

6.2.18 Parsl 0.1.0

Here are the major changes that are included in the Parsl 0.1.0 release.

New functionality

• Support for Bash and Python apps

• Support for chaining of apps via futures handled by the DataFlowKernel.

• Support for execution over threads.

• Arbitrary DAGs can be constructed and executed asynchronously.

Bug Fixes

• Initial release, no listed bugs.

6.3 Libsubmit Changelog

As of Parsl 0.7.0 the libsubmit repository has been merged into Parsl.

6.3.1 Libsubmit 0.4.1

Released. June 18th, 2018. This release folds in massive contributions from @annawoodard.

6.3. Libsubmit Changelog 191

https://github.com/Parsl/parsl/issues/35
https://github.com/Parsl/parsl/issues/30

Parsl Documentation, Release 1.1.0

New functionality

• Several code cleanups, doc improvements, and consistent naming

• All providers have the initialization and actual start of resources decoupled.

6.3.2 Libsubmit 0.4.0

Released. May 15th, 2018. This release folds in contributions from @ahayschi, @annawoodard, @yadudoc

New functionality

• Several enhancements and fixes to the AWS cloud provider (#44, #45, #50)

• Added support for python3.4

Bug Fixes

• Condor jobs left in queue with X state at end of completion issue#26

• Worker launches on Cori seem to fail from broken ENV issue#27

• EC2 provider throwing an exception at initial run issue#46

Design and Rationale

6.4 Swift vs Parsl

The following text is not well structured, and is mostly a brain dump that needs to be organized. Moving from Swift
to an established language (python) came with its own tradeoffs. We get the backing of a rich and very well known
language to handle the language aspects as well as the libraries. However, we lose the parallel evaluation of every
statement in a script. The thesis is that what we lose is minimal and will not affect 95% of our workflows. This is not
yet substantiated.

Please note that there are two Swift languages: Swift/K and Swift/T . These have diverged in syntax and behavior.
Swift/K is designed for grids and clusters runs the java based Karajan (hence, /K) execution framework. Swift/T is
a completely new implementation of Swift/K for high-performance computing. Swift/T uses Turbine(hence, /T) and
and ADLB runtime libraries for highly scalable dataflow processing over MPI, without single-node bottlenecks.

6.4.1 Parallel Evaluation

In Swift (K&T), every statement is evaluated in parallel.

y = f(x);
z = g(x);

We see that y and z are assigned values in different order when we run Swift multiple times. Swift evaluates both
statements in parallel and the order in which they complete is mostly random.

We will not have this behavior in Python. Each statement is evaluated in order.

192 Chapter 6. Developer documentation

https://github.com/Parsl/libsubmit/issues/26
https://github.com/Parsl/libsubmit/issues/27
https://github.com/Parsl/parsl/issues/46
http://swift-lang.org/main/
http://swift-lang.org/Swift-T/index.php
https://wiki.cogkit.org/wiki/Karajan
http://www.mcs.anl.gov/project/adlb-asynchronous-dynamic-load-balancer

Parsl Documentation, Release 1.1.0

int[] array;
foreach v,i in [1:5] {

array[i] = 2*v;
}

foreach v in array {
trace(v)

}

Another consequence is that in Swift, a foreach loop that consumes results in an array need not wait for the foreach
loop that fill the array. In the above example, the second foreach loop makes progress along with the first foreach loop
as it fills the array.

In parsl, a for loop that launches tasks has to complete launches before the control may proceed to the next statement.
The first for loop has to simply finish iterating, and launching jobs, which should take ~length_of_iterable/1000
(items/task_launch_rate).

futures = {};

for i in range(0,10):
futures[i] = app_double(i);

for i in fut_array:
print(i, futures[i])

The first for loop first fills the futures dict before control can proceed to the second for loop that consumes the contents.

The main conclusion here is that, if the iteration space is sufficiently large (or the app launches are throttled), then it is
possible that tasks that are further down the control flow have to wait regardless of their dependencies being resolved.

6.4.2 Mappers

In Swift/K, a mapper is a mechanism to map files to variables. Swift need’s to know files on disk so that it could
move them to remote sites for execution or as inputs to applications. Mapped file variables also indicate to swift that,
when files are created on remote sites, they need to be staged back. Swift/K provides several mappers which makes it
convenient to map files on disk to file variables.

There are two choices here :

1. Have the user define the mappers and data objects

2. Have the data objects be created only by Apps.

In Swift, the user defines file mappings like this :

Mapping a single file
file f <"f.txt">;

Array of files
file texts[] <filesys_mapper; prefix="foo", suffix=".txt">;

The files mapped to an array could be either inputs or outputs to be created. Which is the case is inferred from whether
they are on the left-hand side or right-hand side of an assignment. Variables on the left-hand side are inferred to be
outputs that have future-like behavior. To avoid conflicting values being assigned to the same variable, Swift variables
are all immutable.

For instance, the following would be a major concern if variables were not immutable:

6.4. Swift vs Parsl 193

Parsl Documentation, Release 1.1.0

x = 0;
x = 1;
trace(x);

The results that trace would print would be non-deterministic, if x were mutable. In Swift, the above code would raise
an error. However this is perfectly legal in python, and the x would take the last value it was assigned.

6.4.3 Remote-Execution

In Swift/K, remote execution is handled by coasters. This is a pilot mechanism that supports dynamic resource provi-
sioning from cluster managers such as PBS, Slurm, Condor and handles data transport from the client to the workers.
Swift/T on the other hand is designed to run as an MPI job on a single HPC resource. Swift/T utilized shared-
filesystems that almost every HPC resource has.

To be useful, Parsl will need to support remote execution and file transfers. Here we will discuss just the remote-
execution aspect.

Here is a set of features that should be implemented or borrowed :

• [Done] New remote execution system must have the executor interface.

• [Done] Executors must be memory efficient wrt to holding jobs in memory.

• [Done] Continue to support both BashApps and PythonApps.

• [Done] Capable of using templates to submit jobs to Cluster resource managers.

• [Done] Dynamically launch and shutdown workers.

Note: Since the current roadmap to remote execution is through ipython-parallel, we will limit support to Python3.5+
to avoid library naming issues.

6.4.4 Availability of Python3.5 on target resources

The availability of Python3.5 on compute resources, especially one’s on which the user does not have admin privileges
could be a concern. This was raised by Lincoln from the OSG Team. Here’s a small table of our initial target systems
as of Mar 3rd, 2017 :

Compute Resource Python3.4 Python3.5 Python3.6
Midway (RCC, UChicago) X X
Open Science Grid X X
BlueWaters X X
AWS/Google Cloud X X X
Beagle X

194 Chapter 6. Developer documentation

http://swift-lang.org/guides/trunk/userguide/userguide.html#_how_swift_implements_the_site_execution_model
https://docs.python.org/3/library/concurrent.futures.html#executor-objects

Parsl Documentation, Release 1.1.0

Design

Under construction.

6.5 Roadmap

Before diving into the roadmap, a quick retrospective look at the evolution of workflow solutions that came before
Parsl from the workflows group at UChicago and Argonne National Laboratory.

Sufficient capabilities to use Parsl in many common situations already exist. This document indicates where Parsl is
going; it contains a list of features that Parsl has or will have. Features that exist today are marked in bold, with the
release in which they were added marked for releases since 0.3.0. Help in providing any of the yet-to-be-developed
capabilities is welcome.

The upcoming release is Parsl v0.9.0 and features in preparation are documented via Github issues and milestones.

6.5.1 Core Functionality

• Parsl has the ability to execute standard python code and to asynchronously execute tasks, called Apps.

– Any Python function annotated with “@App” is an App.

– Apps can be Python functions or bash scripts that wrap external applications.

• Asynchronous tasks return futures, which other tasks can use as inputs.

– This builds an implicit data flow graph.

• Asynchronous tasks can execute locally on threads or as separate processes.

• Asynchronous tasks can execute on a remote resource.

– libsubmit (to be renamed) provides this functionality.

– A shared filesystem is assumed; data staging (of files) is not yet supported.

• The Data Flow Kernel (DFK) schedules Parsl task execution (based on dataflow).

• Class-based config definition (v0.6.0)

• Singleton config, and separate DFK from app definitions (v0.6.0)

• Class-based app definition

6.5. Roadmap 195

https://github.com/Parsl/parsl/issues
https://github.com/Parsl/parsl/milestone/7

Parsl Documentation, Release 1.1.0

6.5.2 Data management

• File abstraction to support representation of local and remote files.

• Support for a variety of common data access protocols (e.g., FTP, HTTP, Globus) (v0.6.0).

• Input/output staging models that support transparent movement of data from source to a location on
which it is accessible for compute. This includes staging to/from the client (script execution location) and
worker node (v0.6.0).

• Support for creation of a sandbox and execution within the sandbox.

• Multi-site support including transparent movement between sites.

• Support for systems without a shared file system (point-to-point staging). (Partial support in v0.9.0)

• Support for data caching at multiple levels and across sites.

TODO: Add diagram for staging

6.5.3 Execution core and parallelism (DFK)

• Support for application and data futures within scripts.

• Internal (dynamically created/updated) task/data dependency graph that enables asynchronous execution
ordered by data dependencies and throttled by resource limits.

• Well-defined state transition model for task lifecycle. (v0.5.0)

• Add data staging to task state transition model.

• More efficient algorithms for managing dependency resolution. (v0.7.0)

• Scheduling and allocation algorithms that determine job placement based on job and data requirements (includ-
ing deadlines) as well as site capabilities.

• Directing jobs to a specific set of sites.(v0.4.0)

• Logic to manage (provision, resize) execution resource block based on job requirements, and running
multiple tasks per resource block (v0.4.0).

• Retry logic to support recovery and fault tolerance

• Workflow level checkpointing and restart (v0.4.0)

• Transition away from IPP to in-house executors (HighThroughputExecutor and ExtremeScaleExecutor
v0.7.0)

6.5.4 Resource provisioning and execution

• Uniform abstraction for execution resources (to support resource provisioning, job submission, allocation
management) on cluster, cloud, and supercomputing resources

• Support for different execution models on any execution provider (e.g., pilot jobs using Ipython parallel on clusters and extreme-scale execution using Swift/T on supercomputers)

– Slurm

– HTCondor

– Cobalt

– GridEngine

196 Chapter 6. Developer documentation

Parsl Documentation, Release 1.1.0

– PBS/Torque

– AWS

– GoogleCloud

– Azure

– Nova/OpenStack/Jetstream (partial support)

– Kubernetes (v0.6.0)

• Support for launcher mechanisms

– srun

– aprun (Complete support 0.6.0)

– Various MPI launch mechanisms (Mpiexec, mpirun..)

• Support for remote execution using SSH (from v0.3.0)and OAuth-based authentication (from v0.9.0)

• Utilizing multiple sites for a single script’s execution (v0.4.0)

• Cloud-hosted site configuration repository that stores configurations for resource authentication, data staging,
and job submission endpoints

• IPP workers to support multiple threads of execution per node. (v0.7.0 adds support via replacement
executors)

• Smarter serialization with caching frequently used objects.

• Support for user-defined containers as Parsl apps and orchestration of workflows comprised of containers (v0.5.0)

– Docker (locally)

– Shifter (NERSC, Blue Waters)

– Singularity (ALCF)

6.5.5 Visualization, debugging, fault tolerance

• Support for exception handling.

• Interface for accessing real-time state (v0.6.0).

• Visualization library that enables users to introspect graph, task, and data dependencies, as well as ob-
serve state of executed/executing tasks (from v0.9.0)

• Integration of visualization into jupyter

• Support for visualizing dead/dying parts of the task graph and retrying with updates to the task.

• Retry model to selectively re-execute only the failed branches of a workflow graph

• Fault tolerance support for individual task execution

• Support for saving monitoring information to local DB (sqlite) and remote DB (elasticsearch) (v0.6.0 and
v0.7.0)

6.5. Roadmap 197

Parsl Documentation, Release 1.1.0

6.5.6 Authentication and authorization

• Seamless authentication using OAuth-based methods within Parsl scripts (e.g., native app grants) (v0.6.0)

• Support for arbitrary identity providers and pass through to execution resources

• Support for transparent/scoped access to external services (e.g., Globus transfer) (v0.6.0)

6.5.7 Ecosystem

• Support for CWL, ability to execute CWL workflows and use CWL app descriptions

• Creation of library of Parsl apps and workflows

• Provenance capture/export in standard formats

• Automatic metrics capture and reporting to understand Parsl usage

• Anonymous Usage Tracking (v0.4.0)

6.5.8 Documentation / Tutorials:

• Documentation about Parsl and its features

• Documentation about supported sites (v0.6.0)

• Self-guided Jupyter notebook tutorials on Parsl features

• Hands-on tutorial suitable for webinars and meetings

6.6 Packaging

Currently packaging is managed by @annawoodard and @yadudoc.

Steps to release

1. Update the version number in parsl/parsl/version.py

2. Check the following files to confirm new release information * parsl/setup.py * requirements.txt
* parsl/docs/devguide/changelog.rst * parsl/README.rst

3. Commit and push the changes to github

4. Run the tag_and_release.sh script. This script will verify that version number matches the version
specified.

./tag_and_release.sh <VERSION_FOR_TAG>

Here are the steps that is taken by the tag_and_release.sh script:

Create a new git tag :
git tag <MAJOR>.<MINOR>.<BUG_REV>
Push tag to github :
git push origin <TAG_NAME>

Depending on permission all of the following might have to be run as root.
sudo su

(continues on next page)

198 Chapter 6. Developer documentation

Parsl Documentation, Release 1.1.0

(continued from previous page)

Make sure to have twine installed
pip3 install twine

Create a source distribution
python3 setup.py sdist

Create a wheel package, which is a prebuilt package
python3 setup.py bdist_wheel

Upload the package with twine
twine upload dist/*

6.7 Doc Docs

6.7.1 Documentation location

Documentation is maintained in Python docstrings throughout the code. These are imported via the autodoc Sphinx
extension in docs/reference.rst. Individual stubs for user-facing classes (located in stubs) are generated
automatically via sphinx-autogen. Parsl modules, classes, and methods can be cross-referenced from a docstring by
enclosing it in backticks (`).

6.7.2 Remote builds

Builds are automatically performed by readthedocs.io and published to parsl.readthedocs.io upon git commits.

6.7.3 Local builds

To build the documentation locally, use:

$ make html

6.7.4 Regenerate module stubs

If necessary, docstring stubs can be regenerated using:

$ sphinx-autogen reference.rst

6.7. Doc Docs 199

http://www.sphinx-doc.org/en/stable/ext/autodoc.html

Parsl Documentation, Release 1.1.0

200 Chapter 6. Developer documentation

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

201

Parsl Documentation, Release 1.1.0

202 Chapter 7. Indices and tables

INDEX

Symbols
__init__() (parsl.app.app.AppBase method), 164
__init__() (parsl.app.bash.BashApp method), 165
__init__() (parsl.app.futures.DataFuture method),

110
__init__() (parsl.app.python.PythonApp method),

165
__init__() (parsl.channels.LocalChannel method),

106
__init__() (parsl.channels.OAuthSSHChannel

method), 108
__init__() (parsl.channels.SSHChannel method),

107
__init__() (parsl.channels.SSHInteractiveLoginChannel

method), 109
__init__() (parsl.channels.base.Channel method),

105
__init__() (parsl.config.Config method), 102
__init__() (parsl.data_provider.data_manager.DataManager

method), 111
__init__() (parsl.data_provider.file_noop.NoOpFileStaging

method), 114
__init__() (parsl.data_provider.files.File method),

113
__init__() (parsl.data_provider.ftp.FTPInTaskStaging

method), 114
__init__() (parsl.data_provider.ftp.FTPSeparateTaskStaging

method), 113
__init__() (parsl.data_provider.globus.GlobusStaging

method), 115
__init__() (parsl.data_provider.http.HTTPInTaskStaging

method), 116
__init__() (parsl.data_provider.http.HTTPSeparateTaskStaging

method), 116
__init__() (parsl.data_provider.rsync.RSyncStaging

method), 117
__init__() (parsl.data_provider.staging.Staging

method), 112
__init__() (parsl.dataflow.dflow.DataFlowKernel

method), 166
__init__() (parsl.dataflow.dflow.DataFlowKernelLoader

method), 99

__init__() (parsl.dataflow.flow_control.FlowControl
method), 168

__init__() (parsl.dataflow.flow_control.Timer
method), 171

__init__() (parsl.dataflow.futures.AppFuture
method), 98

__init__() (parsl.dataflow.memoization.Memoizer
method), 169

__init__() (parsl.dataflow.strategy.Strategy method),
170

__init__() (parsl.executors.ExtremeScaleExecutor
method), 129

__init__() (parsl.executors.HighThroughputExecutor
method), 123

__init__() (parsl.executors.LowLatencyExecutor
method), 131

__init__() (parsl.executors.ThreadPoolExecutor
method), 119

__init__() (parsl.executors.WorkQueueExecutor
method), 126

__init__() (parsl.executors.base.ParslExecutor
method), 118

__init__() (parsl.executors.swift_t.TurbineExecutor
method), 132

__init__() (parsl.launchers.AprunLauncher
method), 135

__init__() (parsl.launchers.GnuParallelLauncher
method), 136

__init__() (parsl.launchers.JsrunLauncher method),
137

__init__() (parsl.launchers.MpiExecLauncher
method), 136

__init__() (parsl.launchers.SimpleLauncher
method), 134

__init__() (parsl.launchers.SingleNodeLauncher
method), 134

__init__() (parsl.launchers.SrunLauncher method),
135

__init__() (parsl.launchers.SrunMPILauncher
method), 136

__init__() (parsl.launchers.WrappedLauncher
method), 137

203

Parsl Documentation, Release 1.1.0

__init__() (parsl.monitoring.MonitoringHub
method), 100

__init__() (parsl.providers.AWSProvider method),
140

__init__() (parsl.providers.AdHocProvider method),
138

__init__() (parsl.providers.CobaltProvider method),
141

__init__() (parsl.providers.CondorProvider
method), 143

__init__() (parsl.providers.GoogleCloudProvider
method), 144

__init__() (parsl.providers.GridEngineProvider
method), 146

__init__() (parsl.providers.KubernetesProvider
method), 153

__init__() (parsl.providers.LSFProvider method),
148

__init__() (parsl.providers.LocalProvider method),
147

__init__() (parsl.providers.PBSProProvider
method), 154

__init__() (parsl.providers.SlurmProvider method),
150

__init__() (parsl.providers.TorqueProvider method),
151

__init__() (parsl.providers.cluster_provider.ClusterProvider
method), 157

__init__() (parsl.providers.provider_base.ExecutionProvider
method), 155

A
address_by_hostname() (in module

parsl.addresses), 103
address_by_interface() (in module

parsl.addresses), 104
address_by_query() (in module parsl.addresses),

104
address_by_route() (in module parsl.addresses),

104
AdHocProvider (class in parsl.providers), 138
AppBadFormatting, 159
AppBase (class in parsl.app.app), 164
AppException, 159
AppFuture (class in parsl.dataflow.futures), 98
AppTimeout, 159
AprunLauncher (class in parsl.launchers), 135
AuthException, 163
AWSProvider (class in parsl.providers), 139

B
BadCheckpoint, 161
BadHostKeyException, 163
BadLauncher, 162

BadMessage, 161
BadPermsScriptPath, 163
BadScriptPath, 163
BadStdStreamFile, 159
bash_app() (in module parsl.app.app), 98
BashApp (class in parsl.app.bash), 165
BashAppNoReturn, 159
BashExitFailure, 159

C
Channel (class in parsl.channels.base), 105
ChannelError, 162
ChannelRequired, 162
ClusterProvider (class in

parsl.providers.cluster_provider), 156
CobaltProvider (class in parsl.providers), 141
CondorProvider (class in parsl.providers), 142
Config (class in parsl.config), 101
ConfigurationError, 161

D
DataFlowException, 161
DataFlowKernel (class in parsl.dataflow.dflow), 166
DataFlowKernelLoader (class in

parsl.dataflow.dflow), 99
DataFuture (class in parsl.app.futures), 110
DataManager (class in

parsl.data_provider.data_manager), 111
DependencyError, 161
DeserializationError, 160
DuplicateTaskError, 161

E
ExecutionProvider (class in

parsl.providers.provider_base), 155
ExecutionProviderException, 162
ExecutorError, 160
ExtremeScaleExecutor (class in parsl.executors),

128

F
File (class in parsl.data_provider.files), 113
FileCopyException, 163
FileExists, 163
FlowControl (class in parsl.dataflow.flow_control),

167
FTPInTaskStaging (class in

parsl.data_provider.ftp), 114
FTPSeparateTaskStaging (class in

parsl.data_provider.ftp), 113

G
get_all_checkpoints() (in module parsl.utils),

104

204 Index

Parsl Documentation, Release 1.1.0

get_last_checkpoint() (in module parsl.utils),
104

GlobusStaging (class in parsl.data_provider.globus),
115

GnuParallelLauncher (class in parsl.launchers),
136

GoogleCloudProvider (class in parsl.providers),
144

GridEngineProvider (class in parsl.providers), 145

H
HighThroughputExecutor (class in

parsl.executors), 121
HTTPInTaskStaging (class in

parsl.data_provider.http), 116
HTTPSeparateTaskStaging (class in

parsl.data_provider.http), 116

J
join_app() (in module parsl.app.app), 98
JsrunLauncher (class in parsl.launchers), 137

K
KubernetesProvider (class in parsl.providers), 152

L
LocalChannel (class in parsl.channels), 106
LocalProvider (class in parsl.providers), 146
LowLatencyExecutor (class in parsl.executors), 131
LSFProvider (class in parsl.providers), 147

M
Memoizer (class in parsl.dataflow.memoization), 168
MissingOutputs, 159
MonitoringHub (class in parsl.monitoring), 100
MpiExecLauncher (class in parsl.launchers), 136

N
NoOpFileStaging (class in

parsl.data_provider.file_noop), 114
NotFutureError, 160

O
OAuthSSHChannel (class in parsl.channels), 108
OptionalModuleMissing, 160

P
ParslError, 160
ParslExecutor (class in parsl.executors.base), 118
PBSProProvider (class in parsl.providers), 154
python_app() (in module parsl.app.app), 97
PythonApp (class in parsl.app.python), 165

R
RSyncStaging (class in parsl.data_provider.rsync),

117

S
ScaleOutFailed, 162
ScalingFailed, 160
SchedulerMissingArgs, 162
ScriptPathError, 162
SerializationError, 160
set_file_logger() (in module parsl), 103
set_stream_logger() (in module parsl), 103
SimpleLauncher (class in parsl.launchers), 134
SingleNodeLauncher (class in parsl.launchers), 134
SlurmProvider (class in parsl.providers), 149
SrunLauncher (class in parsl.launchers), 135
SrunMPILauncher (class in parsl.launchers), 136
SSHChannel (class in parsl.channels), 107
SSHException, 163
SSHInteractiveLoginChannel (class in

parsl.channels), 109
Staging (class in parsl.data_provider.staging), 112
Strategy (class in parsl.dataflow.strategy), 169

T
ThreadPoolExecutor (class in parsl.executors), 119
Timer (class in parsl.dataflow.flow_control), 171
TorqueProvider (class in parsl.providers), 151
TurbineExecutor (class in parsl.executors.swift_t),

132

W
WorkerLost, 164
WorkQueueExecutor (class in parsl.executors), 125
WrappedLauncher (class in parsl.launchers), 137

Index 205

	Quickstart
	Installation
	Getting started
	Tutorial
	Usage Tracking
	For Developers

	Parsl tutorial
	Configuring Parsl
	Python Apps
	Bash Apps
	Passing data
	AppFutures
	DataFutures
	Files
	Remote Files
	Sequential workflow
	Parallel workflow
	Parallel dataflow
	Monte Carlo workflow
	Local execution with threads
	Local execution with pilot jobs

	User guide
	Overview
	Apps
	Futures
	Passing Python objects
	Staging data files
	Execution
	Error handling
	Memoization and checkpointing
	Configuration
	Monitoring
	Example parallel patterns
	Structuring Parsl programs
	Join Apps
	Performance and Scalability
	Usage statistics collection

	FAQ
	How can I debug a Parsl script?
	How can I view outputs and errors from apps?
	How can I make an App dependent on multiple inputs?
	Can I pass any Python object between apps?
	How do I specify where apps should be run?
	Workers do not connect back to Parsl
	parsl.dataflow.error.ConfigurationError
	Remote execution fails with SystemError(unknown opcode)
	Parsl complains about missing packages
	zmq.error.ZMQError: Invalid argument
	How do I run code that uses Python2.X?
	Parsl hangs
	How can I start a Jupyter notebook over SSH?
	How can I sync my conda environment and Jupyter environment?
	Addressing SerializationError
	How do I cite Parsl?

	API Reference guide
	Core
	Configuration
	Channels
	Data management
	Executors
	Launchers
	Providers
	Exceptions
	Internal

	Developer documentation
	Contributing
	Changelog
	Libsubmit Changelog
	Swift vs Parsl
	Roadmap
	Packaging
	Doc Docs

	Indices and tables
	Index

